Reversible sensing of the anticoagulant heparin with protamine permselective membranes.

A permselective membrane electrode allows the rapid and operationally reversible detection of the polycationic polypeptide protamine in physiological samples. Anticoagulant levels of heparin can be measured in undiluted whole blood by adding a known excess of its antidote protamine to discrete blood samples.

[1]  E. Bakker,et al.  Interference compensation for thin layer coulometric ion-selective membrane electrodes by the double pulse technique. , 2012, Analytical chemistry.

[2]  M. Meyerhoff,et al.  Detection of protease activities by flash chronopotentiometry using a reversible polycation-sensitive polymeric membrane electrode. , 2011, Analytical biochemistry.

[3]  Eric Bakker,et al.  Membrane response model for ion-selective electrodes operated by controlled-potential thin-layer coulometry. , 2011, Analytical chemistry.

[4]  Eric Bakker,et al.  Thin layer coulometry with ionophore based ion-selective membranes. , 2010, Analytical chemistry.

[5]  E. Bakker,et al.  Flash chronopotentiometric sensing of the polyions protamine and heparin at ion-selective membranes. , 2009, Analytical biochemistry.

[6]  E. Bakker,et al.  Direct sensing of total acidity by chronopotentiometric flash titrations at polymer membrane ion-selective electrodes. , 2008, Analytical chemistry.

[7]  S. Amemiya,et al.  Voltammetric detection of heparin at polarized blood plasma/1,2-dichloroethane interfaces. , 2005, Analytical chemistry.

[8]  E. Bakker,et al.  Response characteristics of a reversible electrochemical sensor for the polyion protamine. , 2005, Analytical chemistry.

[9]  M. Ray,et al.  Heparin monitoring during cardiac surgery. Part 1: validation of whole-blood heparin concentration and activated clotting time , 2003, Perfusion.

[10]  Eric Bakker,et al.  Reversible electrochemical detection of nonelectroactive polyions. , 2003, Journal of the American Chemical Society.

[11]  E. Bakker,et al.  Pulsed galvanostatic control of ionophore-based polymeric ion sensors. , 2003, Analytical chemistry.

[12]  J. Buffle,et al.  Mechanism and kinetics of copper(II) transport through diaza-crown ether-fatty acid-supported liquid membrane , 1999 .

[13]  M. Meyerhoff,et al.  Improved protamine-sensitive membrane electrode for monitoring heparin concentrations in whole blood via protamine titration. , 1998, Clinical chemistry.

[14]  E. Pretsch,et al.  Spectroscopic in situ imaging of acid coextraction processes in solvent polymeric ion-selective electrode and optode membranes , 1998 .

[15]  M. Meyerhoff,et al.  Extraction Thermodynamics of Polyanions into Plasticized Polymer Membranes Doped with Lipophilic Ion Exchangers: A Potentiometric Study , 1995 .

[16]  M. Meyerhoff,et al.  Response mechanism of polymer membrane-based potentiometric polyion sensors. , 1994, Analytical chemistry.

[17]  M. Meyerhoff,et al.  Electrochemical sensor for heparin: further characterization and bioanalytical applications. , 1993, Analytical chemistry.

[18]  M. Meyerhoff,et al.  Heparin-responsive electrochemical sensor: a preliminary study. , 1992, Analytical chemistry.

[19]  R. Buck,et al.  Chronopotentiometry of One‐ and Two‐Ion Transport at Immiscible Liquid Interfaces: Tests of Theory , 1983 .

[20]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[21]  L. Vestergaard,et al.  The titration of heparin with protamine. , 1954, Scandinavian journal of clinical and laboratory investigation.

[22]  L. Jaques,et al.  The reaction of heparin with proteins and complex bases. , 1943, The Biochemical journal.