Optimal Control of Parabolic Hemivariational Inequalities

In this paper we study the optimal control of systems driven by parabolic hemivariational inequalities. First, we establish the existence of solutions to a parabolic hemivariational inequality which contains nonlinear evolution operator. Introducing a control variable in the second member and in the multivalued term, we prove the upper semicontinuity property of the solution set of the inequality. Then we use this result and the direct method of the calculus of variations to show the existence of optimal admissible state–control pairs.

[1]  J. Haslinger,et al.  Approximation of optimal control problems of hemivariational inequalities , 1992 .

[2]  Stanislaw Migórski,et al.  Optimal Shape Design Problems for a Class of Systems Described by Hemivariational Inequalities , 1998, J. Glob. Optim..

[3]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[4]  P. Panagiotopoulos,et al.  Optimal control of systems governed by hemivariational inequalities: existence and approximation results , 1995 .

[5]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[6]  Kung-Ching Chang,et al.  The obstacle problem and partial differential equations with discontinuous nonlinearities , 1980 .

[7]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[8]  P. Panagiotopoulos,et al.  Optimal control of hemivariational inequalities , 1989 .

[9]  P. D. Panagiotopoulos Optimal Control of Systems Governed by Hemivariational Inequalities. Necessary Conditions , 1990 .

[10]  Lamberto Cesari,et al.  Existence of solutions and existence of optimal solutions , 1983 .

[11]  P. Panagiotopoulos,et al.  Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .

[12]  V. Barbu Optimal control of variational inequalities , 1984 .

[13]  M. Miettinen,et al.  A parabolic hemivariational inequality , 1996 .

[14]  Panagiotis D. Panagiotopoulos,et al.  Nonconvex Problems of Semipermeable Media and Related Topics , 1985, 1985.

[15]  P. D. Panagiotopoulos,et al.  Mathematical Theory of Hemivariational Inequalities and Applications , 1994 .

[16]  Jeffrey Rauch,et al.  Discontinuous semilinear differential equations and multiple valued maps , 1977 .

[17]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[18]  Louis B. Rall,et al.  Nonlinear Functional Analysis and Applications , 1971 .

[19]  Dan Tiba,et al.  Optimal Control of Nonsmooth Distributed Parameter Systems , 1990 .

[20]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[21]  J. Haslinger,et al.  Finite element approximation of parabolic hemivariational inequalities , 1998 .

[22]  Kok Lay Teo,et al.  Optimal control of distributed parameter systems , 1981 .

[23]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[24]  P. D. Panagiotopoulos,et al.  Coercive and semicoercive hemivariational inequalities , 1991 .

[25]  Erik J. Balder,et al.  Necessary and sufficient conditions for L 1 -strong—weak lower semicontinuity of integral functionals , 1987 .

[26]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[27]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[28]  Panagiotis D. Panagiotopoulos,et al.  Hemivariational Inequalities: Applications in Mechanics and Engineering , 1993 .

[29]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .