Analytical Model for Redistribution Profile of Ion-Implanted Impurities During Solid-Phase Epitaxy

We evaluated the redistribution profiles of ion-implanted impurities during solid-phase epitaxy using Rutherford backscattering spectrometry (RBS). RBS data revealed that the As concentration changes only near the moving amorphous/crystal interface. We derived an analytical model for the redistribution profiles using a segregation coefficient m between amorphous and crystalline Si, introduced a parameter of reaction length l that is the distance where impurities were exchanged, and obtained good agreement with experimental data with an m value of 3 and an l value of 1 nm for As. Furthermore, we applied our model to P and B redistribution profiles and obtained good agreement with corresponding m value of 4 and l value of 1 nm for P and m value of 0.3 and l value of 1 nm for B

[1]  T. Itani,et al.  Ultrashallow depth profiling using SIMS and ion scattering spectroscopy , 2007 .

[2]  Martin D. Giles,et al.  Defect-coupled diffusion at high concentrations , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  S. Mehta,et al.  Study of reverse annealing behaviors of p+/n ultrashallow junction formed using solid phase epitaxial annealing , 2002 .

[4]  S. Decoutere,et al.  Transient enhanced diffusion of Boron in Si , 2002 .

[5]  J. A. Roth,et al.  Kinetics of solid phase crystallization in amorphous silicon , 1988 .

[6]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[7]  T. Sigmon,et al.  Substrate‐orientation dependence of the epitaxial regrowth rate from Si‐implanted amorphous Si , 1978 .

[8]  S. Solmi,et al.  High‐concentration boron diffusion in silicon: Simulation of the precipitation phenomena , 1990 .

[9]  Optimizing p-type ultra-shallow junctions for the 65 nm CMOS technology node , 2002, Ion Implantation Technology. 2002. Proceedings of the 14th International Conference on.

[10]  T. Seidel Rapid thermal annealing of BF2+implanted, preamorphized silicon , 1983, IEEE Electron Device Letters.

[11]  Yoshiyuki Sato,et al.  Arsenic pileup at the SiO2/Si interface , 1995 .

[12]  Masaharu Oshima,et al.  A model for the segregation and pileup of boron at the SiO2/Si interface during the formation of ultrashallow p+ junctions , 2001 .

[13]  Q. Yang,et al.  Empirical formulae for energy loss straggling of ions in matter , 1991 .

[14]  S. Solmi,et al.  Influence of nucleation on the kinetics of boron precipitation in silicon , 1987 .

[15]  M. Ogasawara,et al.  Inactivation of Low‐Dose Implanted Phosphorus Pileup in the Silicon Side of an Si / SiO2 Interface after Oxidation , 1999 .

[16]  K. Wittmaack,et al.  Surprisingly large apparent profile shifts of As and Sb markers in Si bombarded with ultra-low-energy Cs ion beams , 2003 .

[17]  D. Ward,et al.  A calibrated model for trapping of implanted dopants at material interface during thermal annealing , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[18]  A. Veloso,et al.  Diffusion-less junctions and super halo profiles for PMOS transistors formed by SPER and FUSI gate in 45 nm physical gate length devices , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[19]  Kunihiro Suzuki Model for Transient Enhanced Diffusion of Ion-Implanted Boron, Arsenic, and Phosphorous over Wide Range of Process Conditions , 2003 .

[20]  A. E. Michel,et al.  Rapid annealing and the anomalous diffusion of ion implanted boron into silicon , 1987 .

[21]  M. Y. Tsai,et al.  Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+ , 1979 .

[22]  H. Soleimani Modeling of High‐Dose Ion Implantation‐Induced Dopant Transient Diffusion, and Dopant Transient Activation in Silicon (Boron and Arsenic Diffusion) , 1992 .

[23]  K. Wittmaack,et al.  Surface roughening of silicon under ultra-low-energy cesium bombardment , 2003 .

[24]  N. Cowern,et al.  Transient diffusion of ion‐implanted B in Si: Dose, time, and matrix dependence of atomic and electrical profiles , 1990 .

[25]  H. Oka,et al.  Modeling and Simulation of Fluorine Related Diffusion in Silicon , 2006, 2006 International Workshop on Junction Technology.

[26]  K. Taniguchi,et al.  Anomalous Uphill Diffusion and Dose Loss of Ultra-Low-Energy Implanted Boron in Silicon during Early Stage of Annealing , 2004 .

[27]  K. Jones,et al.  Boron Solubility Limits Following Low Temperature Solid Phase Epitaxial Regrowth , 2001 .

[28]  Chih-Sheng Chang,et al.  Interface induced uphill diffusion of boron: an effective approach for ultrashallow junction , 2001, IEEE Electron Device Letters.

[29]  F. Priolo,et al.  Fluorine segregation and incorporation during solid-phase epitaxy of Si , 2005 .

[30]  Richard B. Fair,et al.  Point Defect Charge‐State Effects on Transient Diffusion of Dopants in Si , 1990 .

[31]  L. Csepregi,et al.  Reordering of amorphous layers of Si implanted with 31P, 75As, and 11B ions , 1977 .

[32]  K. Suzuki,et al.  Compact model for amorphous layer thickness formed by ion implantation over wide ion implantation conditions , 2006, IEEE Transactions on Electron Devices.

[33]  A. E. Michel,et al.  Implantation damage and the anomalous transient diffusion of ion‐implanted boron , 1987 .

[34]  A. G. Cullis,et al.  Characterization by medium energy ion scattering of damage and dopant profiles produced by ultrashallow B and As implants into Si at different temperatures , 2002 .

[35]  S. Solmi,et al.  Diffusion of boron in silicon during post-implantation annealing , 1991 .

[36]  P. Griffin,et al.  Boron uphill diffusion during ultrashallow junction formation , 2003 .

[37]  Marius K. Orlowski,et al.  A model for phosphorus segregation at the silicon-silicon dioxide interface , 1989 .

[38]  K. Suzuki,et al.  High activity of B during solid-phase epitaxy in a pre-amorphized layer formed by Ge ion implantation and deactivation during a subsequent thermal process , 2004, IEEE Transactions on Electron Devices.

[39]  Stephan A. Cohen,et al.  Transient boron diffusion in ion-implanted crystalline and amorphous silicon , 1988 .

[40]  New model for dopant redistribution at interfaces , 1989 .

[41]  K. Kimura,et al.  Monolayer analysis in Rutherford backscattering spectroscopy , 1994 .

[42]  Kunihiro Suzuki,et al.  High activation of Sb during solid-phase epitaxy and deactivation during subsequent thermal process , 2003 .

[43]  C. Zechner,et al.  Phase-field model for the dopant redistribution during solid phase epitaxial regrowth of amorphized silicon , 2004 .

[44]  P. Griffin,et al.  Characterization of arsenic dose loss at the Si/SiO2 interface , 2000 .