Materials selection for nuclear applications: Challenges and opportunities
暂无分享,去创建一个
Michael F. Ashby | Alan Michael Bolind | Massimiliano Fratoni | Peter Hosemann | M. Ashby | P. Hosemann | M. Fratoni | D. Frazer | David Frazer | A. Bolind
[1] Y. Chang. A Correlation of the Coefficients of Thermal Expansion of Metallic Solids with Temperature , 1966 .
[2] B. Meredig,et al. Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .
[3] C. Back,et al. Characterization of SiC–SiC composites for accident tolerant fuel cladding , 2015 .
[4] M. Todosow,et al. Metrics for the Technical Performance Evaluation of Light Water Reactor Accident-Tolerant Fuel , 2016 .
[5] D. Duffy,et al. Fusion power: a challenge for materials science , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] Young Jin Kim,et al. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding , 2016 .
[7] P. Peterson,et al. Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity , 2003 .
[8] M. Ashby. A first report on deformation-mechanism maps , 1972 .
[9] T. Byun,et al. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding , 2015 .
[10] David Cebon,et al. Materials Selection in Mechanical Design , 1992 .
[11] Steven J. Zinkle,et al. Accident tolerant fuels for LWRs: A perspective , 2014 .
[12] M. Fratoni,et al. Neutronic evaluation of coating and cladding materials for accident tolerant fuels , 2016 .
[13] H. Marcus,et al. Elastic constants versus melting temperature in metals , 1984 .
[14] P. Hosemann,et al. Localized mechanical property assessment of SiC/SiC composite materials , 2015 .
[15] Guy de Villers. Sens , 2019, Vocabulaire des histoires de vie et de la recherche biographique.
[16] Y. Kim. 3.14 – Uranium Intermetallic Fuels (U–Al, U–Si, U–Mo) , 2012 .
[17] Steven J. Zinkle,et al. Materials to deliver the promise of fusion power – progress and challenges , 2004 .
[18] G. K. Wehner,et al. Sputtering Yields for Low Energy He+‐, Kr+‐, and Xe+‐Ion Bombardment , 1962 .
[19] H. Seifert,et al. Oxidation at high temperatures in steam atmosphere and quench of silicon carbide composites for nuclear application , 2015 .
[20] Kurt A. Terrani,et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors , 2015 .
[21] Arthur S. Morris,et al. Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique , 2010 .
[22] A. Volinsky,et al. Interfacial Microstructure of Chromium Oxide Coatings , 2007 .
[23] Reinhard Pippan,et al. Towards reduced activation structural materials data for fusion DEMO reactors , 2005 .
[24] William G. Lynch,et al. Introductory Nuclear Physics , 1955 .
[25] Y. Katoh,et al. Handbook of SiC properties for fuel performance modeling , 2007 .
[26] E. Subbarao,et al. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C , 1969 .
[27] Steven J. Zinkle,et al. Overview of materials research for fusion reactors , 2002 .
[28] W. Meier,et al. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets , 2016 .
[29] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[30] N. M. Larson,et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .
[31] Jung-Hwan Park,et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings , 2015 .