Materials selection for nuclear applications: Challenges and opportunities

We discuss the challenge of selecting materials for nuclear applications and outline the need for comprehensive databases to assist scientists and engineers in choosing materials that meet interdependent physical, chemical, and nuclear criteria. In conventional engineering, chemical and physical properties and the electronic structure of materials are typically the primary considerations; nuclear applications must also consider the nuclear physics characteristics of a material. Development of databases that correlate physical, chemical, and nuclear properties would accelerate and facilitate innovations in nuclear design.

[1]  Y. Chang A Correlation of the Coefficients of Thermal Expansion of Metallic Solids with Temperature , 1966 .

[2]  B. Meredig,et al.  Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .

[3]  C. Back,et al.  Characterization of SiC–SiC composites for accident tolerant fuel cladding , 2015 .

[4]  M. Todosow,et al.  Metrics for the Technical Performance Evaluation of Light Water Reactor Accident-Tolerant Fuel , 2016 .

[5]  D. Duffy,et al.  Fusion power: a challenge for materials science , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Young Jin Kim,et al.  Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding , 2016 .

[7]  P. Peterson,et al.  Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity , 2003 .

[8]  M. Ashby A first report on deformation-mechanism maps , 1972 .

[9]  T. Byun,et al.  In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding , 2015 .

[10]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[11]  Steven J. Zinkle,et al.  Accident tolerant fuels for LWRs: A perspective , 2014 .

[12]  M. Fratoni,et al.  Neutronic evaluation of coating and cladding materials for accident tolerant fuels , 2016 .

[13]  H. Marcus,et al.  Elastic constants versus melting temperature in metals , 1984 .

[14]  P. Hosemann,et al.  Localized mechanical property assessment of SiC/SiC composite materials , 2015 .

[15]  Guy de Villers Sens , 2019, Vocabulaire des histoires de vie et de la recherche biographique.

[16]  Y. Kim 3.14 – Uranium Intermetallic Fuels (U–Al, U–Si, U–Mo) , 2012 .

[17]  Steven J. Zinkle,et al.  Materials to deliver the promise of fusion power – progress and challenges , 2004 .

[18]  G. K. Wehner,et al.  Sputtering Yields for Low Energy He+‐, Kr+‐, and Xe+‐Ion Bombardment , 1962 .

[19]  H. Seifert,et al.  Oxidation at high temperatures in steam atmosphere and quench of silicon carbide composites for nuclear application , 2015 .

[20]  Kurt A. Terrani,et al.  Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors , 2015 .

[21]  Arthur S. Morris,et al.  Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique , 2010 .

[22]  A. Volinsky,et al.  Interfacial Microstructure of Chromium Oxide Coatings , 2007 .

[23]  Reinhard Pippan,et al.  Towards reduced activation structural materials data for fusion DEMO reactors , 2005 .

[24]  William G. Lynch,et al.  Introductory Nuclear Physics , 1955 .

[25]  Y. Katoh,et al.  Handbook of SiC properties for fuel performance modeling , 2007 .

[26]  E. Subbarao,et al.  Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C , 1969 .

[27]  Steven J. Zinkle,et al.  Overview of materials research for fusion reactors , 2002 .

[28]  W. Meier,et al.  Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets , 2016 .

[29]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[30]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[31]  Jung-Hwan Park,et al.  High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings , 2015 .