Extended letterplace correspondence for nongraded noncommutative ideals and related algorithms

Let K〈xi〉 be the free associative algebra generated by a finite or a countable number of variables xi. The notion of "letterplace correspondence" introduced in [R. La Scala and V. Levandovskyy, Letterplace ideals and non-commutative Grobner bases, J. Symbolic Comput. 44(10) (2009) 1374–1393; R. La Scala and V. Levandovskyy, Skew polynomial rings, Grobner bases and the letterplace embedding of the free associative algebra, J. Symbolic Comput. 48 (2013) 110–131] for the graded (two-sided) ideals of K〈xi〉 is extended in this paper also to the nongraded case. This amounts to the possibility of modelizing nongraded noncommutative presented algebras by means of a class of graded commutative algebras that are invariant under the action of the monoid ℕ of natural numbers. For such purpose we develop the notion of saturation for the graded ideals of K〈xi,t〉, where t is an extra variable and for their letterplace analogues in the commutative polynomial algebra K[xij, tj], where j ranges in ℕ. In particular, one obt...

[1]  Victor Ufnarovski On the Cancellation Rule in the Homogenization , 2008, Comput. Sci. J. Moldova.

[2]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[3]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[4]  J. Barrett,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[5]  Sóstenes Lins,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134) , 1994 .

[6]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[7]  Patrik Nordbeck,et al.  On some basic applications of Gröbner bases in non-commutative polynomial rings , 1998 .

[8]  Massimo Caboara,et al.  Computing inhomogeneous Gröbner bases , 2009, J. Symb. Comput..

[9]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[10]  ON (DE)HOMOGENIZED GRÖBNER BASES , 2009 .

[11]  V. Ufnarovski Gröbner Bases and Applications: Introduction to Noncommutative Gröbner Bases Theory , 1998 .

[12]  Ferdinando Mora,et al.  Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.

[13]  Yuqun Chen,et al.  Groebner-Shirshov Bases: Some New Results , 2008, 0804.1344.

[14]  G. Bergman The diamond lemma for ring theory , 1978 .

[15]  Vladimir P. Gerdt,et al.  Noetherian quotients of the algebra of partial difference polynomials and Grobner bases of symmetric ideals , 2013, 1304.7967.

[16]  Viktor Levandovskyy,et al.  Letterplace ideals and non-commutative Gröbner bases , 2009, J. Symb. Comput..

[17]  Gian-Carlo Rota,et al.  On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .

[18]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[19]  Viktor Levandovskyy,et al.  Enhanced computations of gröbner bases in free algebras as a new application of the letterplace paradigm , 2013, ISSAC '13.

[20]  Andries E. Brouwer,et al.  Equivariant Gröbner bases and the Gaussian two-factor model , 2011, Math. Comput..

[21]  Huishi Li,et al.  Grobner Bases in Ring Theory , 2011 .

[22]  Lorenzo Robbiano,et al.  Term Orderings on the Polynominal Ring , 1985, European Conference on Computer Algebra.

[23]  V. Drensky Free algebras and PI-algebras : graduate course in algebra , 2000 .

[24]  Matthias Aschenbrenner,et al.  Finite generation of symmetric ideals , 2004, math/0411514.

[25]  Viktor Levandovskyy,et al.  Skew polynomial rings, Gröbner bases and the letterplace embedding of the free associative algebra , 2010, J. Symb. Comput..

[26]  Mikhail Zaicev,et al.  Polynomial identities and asymptotic methods , 2005 .

[27]  Yuqun Chen,et al.  R A ] 8 J an 2 01 1 Some new results on Gröbner-Shirshov bases ∗ , 2013 .

[28]  Roberto La Scala,et al.  Gröbner bases and gradings for partial difference ideals , 2011, Math. Comput..

[29]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .