INCREASING STABILITY IN DYNAMIC GAITS USING NUMERICAL OPTIMIZATION

Optimal gait planning is applied in this work to the problem of improving stability in quadruped locomotion. In many settings, it is desired to operate legged machines at high performance levels where rapid velocities and a changing environment make stability of utmost concern. Since gait planning still remains a vital component of legged system control design, an efficient method of determining periodic paths is presented which optimize a dynamic stability criterion. Efficient recursive multibody algorithms are used with numerical optimal control software to solve the minimax performance stability criteria.

[1]  Charles A. Klein,et al.  Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion , 1985, IEEE J. Robotics Autom..

[2]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[3]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[4]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[5]  K. Kreutz-Delgado,et al.  Minimal energy control of a biped robot with numerical methods and a recursive symbolic dynamic model , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  Yong-San Yoon,et al.  Dynamic instant gait stability measure for quadruped walking robot , 1999, Robotica.

[7]  Y. Hurmuzlu,et al.  On the measurement of dynamic stability of human locomotion. , 1994, Journal of biomechanical engineering.

[8]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[9]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[10]  K. Kreutz,et al.  A Spatial Operator Algebra For Manipulator Modeling And Control , 1988, Other Conferences.

[11]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions , 1991 .

[12]  Richard W. Longman,et al.  Human-like actuated walking that is asymptotically stable without feedback , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[13]  Jan Wikander,et al.  The basic design of the quadruped robot WARP1 , 2000 .

[14]  O. V. Stryk,et al.  Numerical mixed-integer optimal control and motorized traveling salesmen problems , 2001 .

[15]  Zentrum Mathematik Towards Optimal Hybrid Control Solutions for Gait Patterns of a Quadruped , 2000 .

[16]  Oskar von Stryk,et al.  Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen , 1994 .

[17]  Miomir Vukobratović,et al.  Biped Locomotion: Dynamics, Stability, Control and Application , 1990 .

[18]  Dragan Stokic,et al.  Dynamics of Biped Locomotion , 1990 .

[19]  Oskar von Stryk,et al.  Development of a Toolbox for Model‐Based Real‐Time Simulation and Analysis of Legged Robots , 2003 .

[20]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy , 1991 .