Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates.

The effect of the bonding layer type and piezoelectric layer thickness on the magnetoelectric (ME) response of layered poly(vinylidene fluoride) (PVDF)/epoxy/Vitrovac composites is reported. Three distinct epoxy types were tested, commercially known as M-Bond, Devcon, and Stycast. The main differences among them are their different mechanical characteristics, in particular the value of the Young modulus, and the coupling with the polymer and Vitrovac (Fe39Ni39Mo4Si6B12) layers of the laminate. The laminated composites prepared with M-Bond epoxy exhibit the highest ME coupling. Experimental results also show that the ME response increases with increasing PVDF thickness, the highest ME response of 53 V·cm(-1)·Oe(-1) being obtained for a 110 μm thick PVDF/M-Bond epoxy/Vitrovac laminate. The behavior of the ME laminates with increasing temperatures up to 90 °C shows a decrease of more than 80% in the ME response of the laminate, explained by the deteriorated coupling between the different layers. A two-dimensional numerical model of the ME laminate composite based on the finite element method was used to evaluate the experimental results. A comparison between numerical and experimental data allows us to select the appropriate epoxy and to optimize the piezoelectric PVDF layer width to maximize the induced magnetoelectric voltage. The obtained results show the critical role of the bonding layer and piezoelectric layer thickness in the ME performance of laminate composites.

[1]  Yuanhua Lin,et al.  Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead–zirconate–titanate , 2004 .

[2]  Paavo Rasilo,et al.  FEM for Directly Coupled Magneto-Mechanical Phenomena in Electrical Machines , 2010, IEEE Transactions on Magnetics.

[3]  S. Dong,et al.  Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse–transverse modes , 2004 .

[4]  Gopalan Srinivasan,et al.  Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides , 2001 .

[5]  Haosu Luo,et al.  Giant Magnetoelectric Response from a Piezoelectric/Magnetostrictive Laminated Composite Combined with a Piezoelectric Transformer , 2008 .

[6]  Jiangyu Li,et al.  The effective magnetoelectric coefficients of polycrystalline multiferroic composites , 2005 .

[7]  D. M. Esterly Manufacturing of Poly(vinylidene fluoride) and Evaluation of its Mechanical Properties , 2002 .

[8]  T. Lograsso,et al.  Magnetostrictive and magnetoelectric behavior of Fe–20 at. % Ga/Pb(Zr,Ti)O3 laminates , 2005 .

[9]  D. Patil,et al.  Magnetoelectric properties of ME particulate composites , 2008 .

[10]  Jungho Ryu,et al.  Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials , 2002 .

[11]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[12]  S. Lanceros‐Méndez,et al.  Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites , 2011 .

[13]  M. S. Martins,et al.  Optimization of piezoelectric ultrasound emitter transducers for underwater communications , 2012 .

[14]  Shashank Priya,et al.  Giant self-biased magnetoelectric coupling in co-fired textured layered composites , 2013 .

[15]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[16]  Dwight D. Viehland,et al.  Magnetoelectric effect in Terfenol-D/Pb(Zr,TiO)3/μ-metal laminate composites , 2006 .

[17]  Abdul-Ghani Olabi,et al.  Design of a magnetostrictive (MS) actuator , 2008 .

[18]  André Preumont,et al.  Active Tendon Control of Vibration of Truss Structures: Theory and Experiments , 2000 .

[19]  Alessandro Chiolerio,et al.  Magnetoelastic coupling in multilayered ferroelectric/ferromagnetic thin films: A quantitative evaluation , 2012 .

[20]  J. Scott Applications of magnetoelectrics , 2012 .

[21]  Yuanhua Lin,et al.  Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method , 2004 .

[22]  Bin Bao,et al.  Theory of magnetoelectric effect in laminate composites considering two-dimensional internal stresses and equivalent circuit , 2011 .

[23]  Jungho Ryu,et al.  Piezoelectric and Magnetoelectric Properties of Lead Zirconate Titanate/Ni-Ferrite Particulate Composites , 2001 .

[24]  D. Viehland,et al.  Theoretical modelling of magnetoelectric effects in multi-push–pull mode Metglas/piezo-fibre laminates , 2012 .

[25]  G. Lawes,et al.  Introduction to magnetoelectric coupling and multiferroic films , 2011 .

[26]  Q. Yang,et al.  Induced magneto-electric coupling at ferroelectric/ferromagnetic interface , 2013 .

[27]  C. Nan,et al.  Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. , 1994, Physical review. B, Condensed matter.

[28]  J. L. Gomez Ribelles,et al.  Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy , 2012, The European physical journal. E, Soft matter.

[29]  Yuanhua Lin,et al.  Magnetic-dielectric properties of NiFe2O4/PZT particulate composites , 2004 .

[30]  Suman Datta,et al.  Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect , 2009 .

[31]  S. Priya,et al.  Giant magnetoelectric effect in sintered multilayered composite structures , 2008 .

[32]  S. Lanceros‐Méndez,et al.  Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing , 2011 .

[33]  Senentxu Lanceros-Méndez,et al.  Polymer‐Based Magnetoelectric Materials , 2013 .

[34]  K. Loh,et al.  Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing , 2011 .

[35]  Yuanhua Lin,et al.  Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1−xDyxFe2 and PbZrxTi1−xO3 , 2003 .

[36]  Alessandro Chiolerio,et al.  Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites , 2013, Journal of Materials Science.

[37]  Sheng-Guo Lu,et al.  Multiferroic Polymer Composites with Greatly Enhanced Magnetoelectric Effect under a Low Magnetic Bias , 2011, Advanced materials.

[38]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[39]  T. Tunkasiri,et al.  Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics , 2006 .

[40]  Senentxu Lanceros-Méndez,et al.  Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites , 2011 .

[41]  John L. Crassidis,et al.  Sensors and actuators , 2005, Conference on Electron Devices, 2005 Spanish.