Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells

[1]  Michael Grätzel,et al.  Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment , 2018 .

[2]  Hongzheng Chen,et al.  Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11% , 2018 .

[3]  M. Green,et al.  Humidity‐Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells , 2018 .

[4]  Jinsong Huang,et al.  Thin single crystal perovskite solar cells to harvest below-bandgap light absorption , 2017, Nature Communications.

[5]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[6]  J. Bisquert,et al.  Guanidinium thiocyanate selective Ostwald ripening induced large grain for high performance perovskite solar cells , 2017 .

[7]  Sang Yoon Lee,et al.  Printable organometallic perovskite enables large-area, low-dose X-ray imaging , 2017, Nature.

[8]  Yongzhen Wu,et al.  Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells , 2017 .

[9]  Jinsong Huang,et al.  Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. , 2017, Nature materials.

[10]  Hongzheng Chen,et al.  Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability. , 2017, Small.

[11]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[12]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[13]  Jinsong Huang,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[14]  M. Kanatzidis,et al.  Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead‐Free Perovskite Solar Cells , 2017, Advanced materials.

[15]  Yanfa Yan,et al.  Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis , 2017 .

[16]  Yanfa Yan,et al.  Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells , 2017 .

[17]  M. Grätzel The Rise of Highly Efficient and Stable Perovskite Solar Cells. , 2017, Accounts of chemical research.

[18]  Po-Shen Shen,et al.  Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability. , 2017, ACS applied materials & interfaces.

[19]  Matthew R. Leyden,et al.  Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells , 2016 .

[20]  M. Yoon,et al.  Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite , 2016, Science Advances.

[21]  Dong Hoe Kim,et al.  Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening , 2016, Nature Communications.

[22]  D. Mitzi,et al.  Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells , 2016, Advanced materials.

[23]  Hongzheng Chen,et al.  Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process , 2016 .

[24]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[25]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.

[26]  A. Di Carlo,et al.  In situ observation of heat-induced degradation of perovskite solar cells , 2016, Nature Energy.

[27]  D. Scanlon,et al.  (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? , 2015, The journal of physical chemistry letters.

[28]  Shyamtanu Chattoraj,et al.  Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises. , 2015, The journal of physical chemistry letters.

[29]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[30]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[31]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[32]  Gautam Gupta,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[33]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[34]  Henry J. Snaith,et al.  Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells , 2014 .

[35]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[36]  R. Friend,et al.  Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges. , 2014, The journal of physical chemistry letters.

[37]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[38]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[39]  M. Grätzel,et al.  Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2013, Science.

[40]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[41]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[42]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[43]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[44]  T. Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[45]  Hao Gao,et al.  A halide exchange engineering for CH3NH3PbI3−xBrx perovskite solar cells with high performance and stability , 2016 .

[46]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[47]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .