Revealing excited states of rotational Bose–Einstein condensates
暂无分享,去创建一个
Q. Du | Yongyong Cai | Zhen Huang | Jianyuan Yin | Lei Zhang
[1] Pingwen Zhang,et al. Discretization and index-robust error analysis for constrained high-index saddle dynamics on the high-dimensional sphere , 2022, Science China Mathematics.
[2] T. Bourdel,et al. Tunable Three-Body Interactions in Driven Two-Component Bose-Einstein Condensates. , 2021, Physical review letters.
[3] Lei Zhang,et al. Nematic Liquid Crystals in a Rectangular Confinement: Solution Landscape, and Bifurcation , 2021, SIAM J. Appl. Math..
[4] Yucheng Hu,et al. Solution landscapes of the simplified Ericksen–Leslie model and its comparisonwith the reduced Landau–deGennes model , 2021, Proceedings of the Royal Society A.
[5] Lei Zhang,et al. Solution landscape of the onsager model identifies non-axisymmetric critical points , 2021, Physica D: Nonlinear Phenomena.
[6] Wei Wang,et al. Modelling and computation of liquid crystals , 2021, Acta Numerica.
[7] Y. Nishiura,et al. Solution landscapes of the diblock copolymer-homopolymer model under two-dimensional confinement. , 2021, Physical review. E.
[8] Zhen Huang,et al. Constrained High-Index Saddle Dynamics for the Solution Landscape with Equality Constraints , 2020, J. Sci. Comput..
[9] Y. A. Aoto,et al. Calculating the distance from an electronic wave function to the manifold of Slater determinants through the geometry of Grassmannians , 2020, 2012.05283.
[10] H. Takeuchi. Quantum Elliptic Vortex in a Nematic-Spin Bose-Einstein Condensate. , 2020, Physical review letters.
[11] Pingwen Zhang,et al. Transition pathways connecting crystals and quasicrystals , 2020, Proceedings of the National Academy of Sciences.
[12] Lei Zhang,et al. Searching the solution landscape by generalized high-index saddle dynamics , 2020, Science China Mathematics.
[13] M. Nitta,et al. Vortex patterns of atomic Bose-Einstein condensates in a density-dependent gauge potential , 2020, 2002.09189.
[14] Yongyong Cai,et al. Numerical methods for Bogoliubov-de Gennes excitations of Bose-Einstein condensates , 2020, J. Comput. Phys..
[15] Masahito Ueda,et al. Magnetic Solitons in a Spin-1 Bose-Einstein Condensate. , 2019, Physical review letters.
[16] A. Maiani,et al. Vortex nucleation barrier in superconductors beyond the Bean-Livingston approximation: A numerical approach for the sphaleron problem in a gauge theory , 2019, Physical Review B.
[17] Pingwen Zhang,et al. Construction of a Pathway Map on a Complicated Energy Landscape. , 2019, Physical review letters.
[18] W. Bao,et al. Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates , 2018, Physical Review A.
[19] P. E. Farrell,et al. Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation , 2016, Commun. Nonlinear Sci. Numer. Simul..
[20] D. Campbell,et al. Vortex nucleation in a Bose–Einstein condensate: from the inside out , 2016, 1605.03067.
[21] J. M. Zhang,et al. Optimal Slater-determinant approximation of fermionic wave functions , 2015, 1510.05634.
[22] K. Law,et al. Dynamic and energetic stabilization of persistent currents in Bose-Einstein condensates , 2014, 1402.6007.
[23] J. M. Zhang,et al. Optimal multiconfiguration approximation of an N -fermion wave function , 2013, 1309.1848.
[24] P. Kevrekidis,et al. Stable vortex-bright-soliton structures in two-component Bose-Einstein condensates. , 2010, Physical review letters.
[25] Masahito Ueda,et al. Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.
[26] Brian P. Anderson,et al. Spontaneous vortices in the formation of Bose–Einstein condensates , 2008, Nature.
[27] A. Fetter. Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.
[28] I. Chern,et al. Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates , 2006, J. Comput. Phys..
[29] Xavier Blanc,et al. Vortex Lattices in Rotating Bose-Einstein Condensates , 2006, SIAM J. Math. Anal..
[30] B. Malomed,et al. Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction , 2006, cond-mat/0603793.
[31] Weizhu Bao,et al. Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .
[32] J. Dalibard,et al. Vortex patterns in a fast rotating Bose-Einstein condensate (11 pages) , 2004, cond-mat/0410665.
[33] P. Engels,et al. Observation of Tkachenko oscillations in rapidly rotating Bose-Einstein condensates. , 2003, Physical review letters.
[34] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[35] Masahito Ueda,et al. Nonlinear dynamics of vortex lattice formation in a rotating Bose-Einstein condensate , 2002, cond-mat/0211394.
[36] C. Wieman,et al. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .
[37] W. Ketterle,et al. Vortex nucleation in a stirred Bose-Einstein condensate. , 2001, Physical review letters.
[38] A. Leggett,et al. Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .
[39] W. Ketterle,et al. Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.
[40] Q. Du,et al. Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime , 2001, cond-mat/0103299.
[41] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[42] J. Dalibard,et al. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. , 2001, Physical review letters.
[43] Dalibard,et al. Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.
[44] F. Peeters,et al. Flux penetration and expulsion in thin superconducting disks , 1999, cond-mat/9908257.
[45] C. E. Wieman,et al. Vortices in a Bose Einstein condensate , 1999, QELS 2000.
[46] R. Ballagh,et al. Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates , 1999, cond-mat/9902092.
[47] D. Butts,et al. Predicted signatures of rotating Bose–Einstein condensates , 1999, Nature.
[48] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[49] K. B. Davis,et al. Bose-Einstein condensation in a gas of sodium atoms. , 1995, Physical review letters.
[50] C. Sackett,et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.
[51] C. Wieman,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.
[52] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[53] M. Tsubota,et al. Quantised Vortices in Atomic Bose–Einsten Condensates , 2009 .
[54] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[55] Roel Hospel,et al. Morse Theory , 1999 .