On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers

The paper is concerned with the numerical simulation of compressible flow with wide range of Mach numbers. We present a new technique which combines the discontinuous Galerkin space discretization, a semi-implicit time discretization and a special treatment of boundary conditions in inviscid convective terms. It is applicable to the solution of steady and unsteady compressible flow with high Mach numbers as well as low Mach number flow at incompressible limit without any modification of the Euler or Navier–Stokes equations.

[1]  G Vijayasundaram,et al.  Transonic flow simulations using an upstream centered scheme of Godunov in finite elements , 1986 .

[2]  Miloslav Feistauer,et al.  Mathematical Methods in Fluid Dynamics , 1993 .

[3]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[4]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[5]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[6]  George Em Karniadakis,et al.  Spectral/hp Methods for Viscous Compressible Flows on Unstructured 2D Meshes , 1998 .

[7]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[8]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[9]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[10]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[11]  Vít Dolejsí Anisotropic mesh adaptation technique for viscous flow simulation , 2001, J. Num. Math..

[12]  Andreas Meister,et al.  Hyperbolic Partial Differential Equations , 2002 .

[13]  Miloslav Feistauer,et al.  Mathematical and Computational Methods for Compressible Flow , 2003 .

[14]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow , 2003 .

[15]  Miloslav Feistauer,et al.  On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..

[16]  Miloslav Feistauer,et al.  Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems , 2004, J. Num. Math..

[17]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .

[18]  M. Feistauer,et al.  Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems , 2005 .

[19]  Miloslav Feistauer,et al.  Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems , 2007 .

[20]  Vít Dolejší,et al.  Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .