Cortico-Striatal Origins of Reservoir Computing, Mixed Selectivity, and Higher Cognitive Function

[1]  Okihide Hikosaka Role of basal ganglia in saccades. , 1989, Revue neurologique.

[2]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[3]  Jean-Marc Fellous,et al.  Download details: IP Address: 128.196.98.99 , 2011 .

[4]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Peter M. Vishton,et al.  Rule learning by seven-month-old infants. , 1999, Science.

[6]  J. Mehler,et al.  Language discrimination by newborns: toward an understanding of the role of rhythm. , 1998, Journal of experimental psychology. Human perception and performance.

[7]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[8]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[9]  Peter Ford Dominey,et al.  Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing , 2015, Brain and Language.

[10]  P. Hagoort On Broca, brain, and binding: a new framework , 2005, Trends in Cognitive Sciences.

[11]  David Sussillo,et al.  Opening the Black Box: Low-Dimensional Dynamics in High-Dimensional Recurrent Neural Networks , 2013, Neural Computation.

[12]  Peter Ford Dominey,et al.  Dissociable Processes for Learning the Surface Structure and Abstract Structure of Sensorimotor Sequences , 1998, Journal of Cognitive Neuroscience.

[13]  T. Carrell,et al.  Central Auditory System Plasticity Associated with Speech Discrimination Training , 1995, Journal of Cognitive Neuroscience.

[14]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[15]  A. Friederici Towards a neural basis of auditory sentence processing , 2002, Trends in Cognitive Sciences.

[16]  Peter Ford Dominey,et al.  Nonlinguistic transformation processing in agrammatic aphasia , 2000, Behavioral and Brain Sciences.

[17]  Peter Ford Dominey,et al.  DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self , 2017, IEEE Transactions on Cognitive and Developmental Systems.

[18]  Peter Ford Dominey,et al.  Influences of temporal organization on sequence learning and transfer : Comments on Stadler (1995) and Curran and Keele (1993) , 1998 .

[19]  P. Calabresi,et al.  Dopaminergic control of synaptic plasticity in the dorsal striatum , 2001, The European journal of neuroscience.

[20]  Alex Graves,et al.  Neural Turing Machines , 2014, ArXiv.

[21]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[22]  Peter Ford Dominey,et al.  A shared system for learning serial and temporal structure of sensori-motor sequences? Evidence from simulation and human experiments. , 1998, Brain research. Cognitive brain research.

[23]  J. V. van Berkum,et al.  How robust is the language architecture? The case of mood , 2013, Front. Psychol..

[24]  O Hikosaka,et al.  Functional properties of monkey caudate neurons. II. Visual and auditory responses. , 1989, Journal of neurophysiology.

[25]  Peter Ford Dominey,et al.  Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex , 2016, PLoS Comput. Biol..

[26]  Michael A. Stadler,et al.  Implicit serial learning: Questions inspired by Hebb (1961) , 1993, Memory & cognition.

[27]  Peter Ford Dominey,et al.  When Broca Experiences the Janus Syndrome: an ER-FMRI Study Comparing Sentence Comprehension and Cognitive Sequence Processing , 2006, Cortex.

[28]  P. Jusczyk The discovery of spoken language , 1997 .

[29]  E. Procyk,et al.  Behavioral Shifts and Action Valuation in the Anterior Cingulate Cortex , 2008, Neuron.

[30]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[31]  Razvan Pascanu,et al.  A neurodynamical model for working memory , 2011, Neural Networks.

[32]  Michael I. Jordan,et al.  CoCoA: A General Framework for Communication-Efficient Distributed Optimization , 2016, J. Mach. Learn. Res..

[33]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[34]  Peter Ford Dominey,et al.  Beyond the word and image: characteristics of a common meaning system for language and vision revealed by functional and structural imaging , 2015, NeuroImage.

[35]  Peter Ford Dominey,et al.  Recurrent temporal networks and language acquisition—from corticostriatal neurophysiology to reservoir computing , 2013, Front. Psychol..

[36]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[37]  Paolo Calabresi,et al.  Dopamine-mediated regulation of corticostriatal synaptic plasticity , 2007, Trends in Neurosciences.

[38]  Peter Ford Dominey,et al.  ERP analysis of cognitive sequencing: a left anterior negativity related to structural transformation processing , 2000, Neuroreport.

[39]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  P. Goldman-Rakic Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory , 2011 .

[41]  Peter Ford Dominey,et al.  Cortico-striatal function in sentence comprehension: Insights from neurophysiology and modeling , 2009, Cortex.

[42]  Benjamin Schrauwen,et al.  Oger: modular learning architectures for large-scale sequential processing , 2012, J. Mach. Learn. Res..

[43]  Peter Ford Dominey Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning , 1995, Biological Cybernetics.

[44]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[45]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[46]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[47]  A. Friederici The cortical language circuit: from auditory perception to sentence comprehension , 2012, Trends in Cognitive Sciences.

[48]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[49]  Peter Ford Dominey,et al.  Beyond the word and image: II- Structural and functional connectivity of a common semantic system , 2018, NeuroImage.

[50]  Peter Ford Dominey,et al.  Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir Computing , 2013, PloS one.

[51]  P. Calabresi,et al.  Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory , 2009, Behavioural Brain Research.

[52]  Peter Ford Dominey,et al.  Neurological basis of language and sequential cognition: Evidence from simulation, aphasia, and ERP studies , 2003, Brain and Language.

[53]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[54]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. , 1989, Journal of neurophysiology.

[55]  Thierry Nazzi,et al.  Language Discrimination by Newborns: Toward an Understanding of the Role of Rhythm , 1998 .

[56]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[57]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. , 1983, Journal of neurophysiology.

[58]  Christine D. Wilson,et al.  Grounding conceptual knowledge in modality-specific systems , 2003, Trends in Cognitive Sciences.

[59]  H. Duffau,et al.  Cortico-striatal language pathways dynamically adjust for syntactic complexity: A computational study , 2017, Brain and Language.

[60]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[61]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[62]  Peter Ford Dominey,et al.  Neural network processing of natural language: I. Sensitivity to serial, temporal and abstract structure of language in the infant , 2000 .

[63]  D. Caplan,et al.  Syntactic determinants of sentence comprehension in aphasia , 1985, Cognition.

[64]  Peter Ford Dominey,et al.  Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing , 2009, Brain and Language.

[65]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Peter Ford Dominey,et al.  A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences , 1995, Journal of Cognitive Neuroscience.

[67]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[68]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[69]  Benjamin Schrauwen,et al.  Reservoir Computing Trends , 2012, KI - Künstliche Intelligenz.

[70]  Peter Ford Dominey,et al.  Cognitive sequence processing and syntactic comprehension in schizophrenia , 2000, Neuroreport.

[71]  Herbert Jaeger,et al.  Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns , 2017, J. Mach. Learn. Res..

[72]  M. Blignaut,et al.  Towards a Transferable and Cost-Effective Plant AFLP Protocol , 2013, PloS one.

[73]  Peter Ford Dominey,et al.  A cortico-subcortical model for generation of spatially accurate sequential saccades. , 1992, Cerebral cortex.

[74]  J. Joseph,et al.  Prefrontal cortex and spatial sequencing in macaque monkey , 2004, Experimental Brain Research.

[75]  Peter Ford Dominey,et al.  Narrative Constructions for the Organization of Self Experience: Proof of Concept via Embodied Robotics , 2017, Front. Psychol..

[76]  Michael E. Goldberg,et al.  Physiology of the frontal eye fields , 1984, Trends in Neurosciences.

[77]  Peter Ford Dominey,et al.  Prefrontal cortex creates novel navigation sequences from hippocampal place-cell replay with spatial reward propagation , 2018, bioRxiv.