TRINICON-based Blind System Identification with Application to Multiple-Source Localization and Separation

This contribution treats blind system identification approaches and how they can be used to localize multiple sources in environments where multipath propagation cannot be neglected, e.g., acoustic sources in reverberant environments. Based on TRINICON, a general framework for broadband adaptive MIMO signal processing, we first derive a versatile blind MIMO system identification method. For this purpose, the basics of TRINICON will be reviewed to the extent needed for this application, and some new algorithmic aspects will be emphasized. The generic approach then allows us to study various illustrative relations to other algorithms and applications. In particular, it is shown that the optimization criteria used for blind system identification allow a generalization of the well-known Adaptive Eigen- value Decomposition (AED) algorithm for source localization: Instead of one source as with AED, several sources can be localized simultaneously. Performance evalu- ation in realistic scenarios will show that this method compares favourably with other state-of-the-art methods for source localization.

[1]  Benoît Champagne,et al.  Performance of time-delay estimation in the presence of room reverberation , 1996, IEEE Trans. Speech Audio Process..

[2]  WADE FOY,et al.  Position-Location Solutions by Taylor-Series Estimation , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Walter Kellermann,et al.  A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics , 2005, IEEE Transactions on Speech and Audio Processing.

[4]  Bin Yang,et al.  Disambiguation of TDOA Estimates in Multi-Path Multi-Source Environments (DATEMM) , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[5]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  Hiroshi Sawada,et al.  A robust and precise method for solving the permutation problem of frequency-domain blind source separation , 2004, IEEE Transactions on Speech and Audio Processing.

[7]  Unto K. Laine,et al.  Splitting the unit delay [FIR/all pass filters design] , 1996, IEEE Signal Process. Mag..

[8]  Walter Kellermann,et al.  Robustness of Acoustic Multiple-Source Localization in Adverse Environments , 2006 .

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[11]  Les E. Atlas,et al.  Strategies for improving audible quality and speech recognition accuracy of reverberant speech , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[12]  Paris Smaragdis,et al.  Blind separation of convolved mixtures in the frequency domain , 1998, Neurocomputing.

[13]  Walter Kellermann,et al.  Acoustic source detection and localization based on wavefield decomposition using circular microphone arrays , 2006 .

[14]  Kung Yao,et al.  Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field , 2002, IEEE Trans. Signal Process..

[15]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[16]  Shoko Araki,et al.  The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech , 2003, IEEE Trans. Speech Audio Process..

[17]  Walter Kellermann,et al.  Multidimensional Localization of Multiple Sound Sources Using Blind Adaptive MIMO System Identification , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[18]  Jacob Benesty,et al.  Real-time passive source localization: a practical linear-correction least-squares approach , 2001, IEEE Trans. Speech Audio Process..

[19]  Kung Yao,et al.  A representation theorem and its applications to spherically-invariant random processes , 1973, IEEE Trans. Inf. Theory.

[20]  H. Brehm,et al.  Description and generation of spherically invariant speech-model signals , 1987 .

[21]  Walter Kellermann,et al.  RELATION BETWEEN BLIND SYSTEM IDENTIFICATION AND CONVOLUTIVE BLIND SOURCE SEPARATION , 2005 .

[22]  J. Smith,et al.  The spherical interpolation method for closed-form passive source localization using range difference measurements , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[23]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[24]  K. C. Ho,et al.  A simple and efficient estimator for hyperbolic location , 1994, IEEE Trans. Signal Process..

[25]  Chrysostomos L. Nikias,et al.  EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals , 1995, IEEE Trans. Signal Process..

[26]  Hyoung Joong Kim,et al.  Knowledge-Assisted Media Analysis for Interactive Multimedia Applications , 2007, EURASIP J. Adv. Signal Process..

[27]  Hong Wang,et al.  Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources , 1985, IEEE Trans. Acoust. Speech Signal Process..

[28]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[29]  K. C. Ho,et al.  An efficient closed-form localization solution from time difference of arrival measurements , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  Jose C. Principe,et al.  Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation , 2000 .

[31]  T. Kailath,et al.  Optimum localization of multiple sources by passive arrays , 1983 .

[32]  Walter Kellermann,et al.  A real-time blind source separation scheme and its application to reverberant and noisy acoustic environments , 2006, Signal Process..

[33]  Walter Kellermann,et al.  Exploiting Narrowband Efficiency for Broadband Convolutive Blind Source Separation , 2007, EURASIP J. Adv. Signal Process..

[34]  Markus Hofbauer,et al.  Optimal linear separation and deconvolution of acoustical convolutive mixtures , 2005 .

[35]  J. Ianniello,et al.  Time delay estimation via cross-correlation in the presence of large estimation errors , 1982 .

[36]  Hiroshi Sawada,et al.  SPECTRAL SMOOTHING FOR FREQUENCY-DOMAIN BLIND SOURCE SEPARATION , 2003 .

[37]  Te-Won Lee,et al.  Independent Vector Analysis: An Extension of ICA to Multivariate Components , 2006, ICA.

[38]  Dennis R. Morgan,et al.  Exploring permutation inconsistency in blind separation of speech signals in a reverberant environment , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[39]  Scott C. Douglas,et al.  Blind Separation of Acoustic Signals , 2001, Microphone Arrays.

[40]  Shoko Araki,et al.  Equivalence between frequency domain blind source separation and frequency domain adaptive beamforming , 2002, ICASSP.

[41]  Walter Kellermann,et al.  Simultaneous localization of multiple sound sources using blind adaptive MIMO filtering , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[42]  Walter Kellermann,et al.  TRINICON: a versatile framework for multichannel blind signal processing , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[43]  Walter Kellermann,et al.  Blind Source Separation for Convolutive Mixtures: A Unified Treatment , 2004 .

[44]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[45]  Julius O. Smith,et al.  Closed-form least-squares source location estimation from range-difference measurements , 1987, IEEE Trans. Acoust. Speech Signal Process..

[46]  K. Matsuoka,et al.  Minimal distortion principle for blind source separation , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[47]  Hui Liu,et al.  A deterministic approach to blind identification of multi-channel FIR systems , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[48]  Shun-ichi AMARIyy,et al.  NATURAL GRADIENT LEARNING WITH A NONHOLONOMIC CONSTRAINT FOR BLIND DECONVOLUTION OF MULTIPLE CHANNELS , 1999 .

[49]  Steven A. Tretter,et al.  Optimum processing for delay-vector estimation in passive signal arrays , 1973, IEEE Trans. Inf. Theory.

[50]  Walter Kellermann,et al.  BLIND SOURCE SEPARATION FOR CONVOLUTIVE MIXTURES EXPLOITI NG NONGAUSSIANITY, NONWHITENESS, AND NONSTATIONARITY , 2003 .

[51]  Joel Goldman,et al.  Detection in the presence of spherically symmetric random vectors , 1976, IEEE Trans. Inf. Theory.

[52]  Masato Miyoshi,et al.  Inverse filtering of room acoustics , 1988, IEEE Trans. Acoust. Speech Signal Process..

[53]  Noboru Ohnishi,et al.  A method of blind separation for convolved non-stationary signals , 1998, Neurocomputing.

[54]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[55]  Walter Kellermann,et al.  A GENERALIZATION OF A CLASS OF BLIND SOURCE SEPARATION ALGORITHMS FOR CONVOLUTIVE MIXTURES , 2003 .

[56]  Shoko Araki,et al.  Equivalence between frequency domain blind source separation and frequency domain adaptive null beamformers , 2001, INTERSPEECH.

[57]  Benesty,et al.  Adaptive eigenvalue decomposition algorithm for passive acoustic source localization , 2000, The Journal of the Acoustical Society of America.

[58]  K. Furuya,et al.  Two-channel blind deconvolution of nonminimum phase FIR systems , 1997 .

[59]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[60]  Benoît Champagne,et al.  A new cepstral prefiltering technique for estimating time delay under reverberant conditions , 1997, Signal Process..

[61]  Michael S. Brandstein,et al.  Microphone Arrays - Signal Processing Techniques and Applications , 2001, Microphone Arrays.

[62]  David G. Long,et al.  Array signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[63]  Atsuo Hiroe,et al.  Solution of Permutation Problem in Frequency Domain ICA, Using Multivariate Probability Density Functions , 2006, ICA.

[64]  Sascha Spors,et al.  An audio-visual database for evaluating person tracking algorithms , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[65]  Michael S. Brandstein,et al.  A robust method for speech signal time-delay estimation in reverberant rooms , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[66]  C. Burrus,et al.  Array Signal Processing , 1989 .

[67]  H. C. Schau,et al.  Passive source localization employing intersecting spherical surfaces from time-of-arrival differences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[68]  Jacob Benesty,et al.  Audio Signal Processing for Next-Generation Multimedia Communication Systems , 2004 .

[69]  Kiyohiro Shikano,et al.  Comparison of time-domain ICA, frequency-domain ICA and multistage ICA for blind source separation , 2002, 2002 11th European Signal Processing Conference.

[70]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[71]  K. Furuya Noise reduction and dereverberation using correlation matrix based on the multiple-input/output inverse-filtering theorem (MINT) , 2001 .

[72]  R. Schmidt A New Approach to Geometry of Range Difference Location , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[73]  C. Fancourt,et al.  The coherence function in blind source separation of convolutive mixtures of non-stationary signals , 2001, Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat. No.01TH8584).

[74]  Jacob Benesty,et al.  Time Delay Estimation , 2004 .