Splitter Sets and $k$ -Radius Sequences

Splitter sets are closely related to lattice tilings, and have applications in flash memories and conflict-avoiding codes. The study of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-radius sequences was motivated by some problems occurring in large data transfer. It is observed that the existence of splitter sets yields <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-radius sequences of short length. In this paper, we obtain several new results contributing to splitter sets and <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-radius sequences. We give some new constructions of perfect splitter sets, as well as some nonexistence results on them. As a byproduct, we obtain some new results on optimal conflict-avoiding codes. Furthermore, we provide several explicit constructions of short <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-radius sequences for certain values of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, by establishing the existence of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-additive sequences. In particular, we show that for any fixed <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, there exist infinitely many values of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">$f_{k}(n) =\frac {n^{2}}{2k}+O(n)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$f_{k} (n)$ </tex-math></inline-formula> denotes the shortest length of an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-ary <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-radius sequence. This result partially affirms a conjecture posed by Bondy, Lonc, and Rzążewski.

[1]  Torleiv Kløve,et al.  Some Codes Correcting Asymmetric Errors of Limited Magnitude , 2011, IEEE Transactions on Information Theory.

[2]  Torleiv Kløve,et al.  Codes Correcting Single Errors of Limited Magnitude , 2012, IEEE Transactions on Information Theory.

[3]  Sakti P. Ghosh Consecutive storage of relevant records with redundancy , 1975, Commun. ACM.

[4]  A. D. Sands,et al.  Factoring Groups into Subsets , 2009 .

[5]  Moshe Schwartz,et al.  On the non-existence of lattice tilings by quasi-crosses , 2012, 2013 Information Theory and Applications Workshop (ITA).

[6]  Miroslaw Truszczynski,et al.  Constructions of asymptotically shortest k-radius sequences , 2012, J. Comb. Theory, Ser. A.

[7]  Zbigniew Lonc Note on a construction of short k-radius sequences , 2017, Discret. Math..

[8]  Sherman K. Stein Factoring by subsets , 1967 .

[9]  Yanxun Chang,et al.  Optimal (4up, 5, 1) optical orthogonal codes , 2004 .

[10]  Kenneth W. Shum,et al.  A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes , 2010, IEEE Transactions on Information Theory.

[11]  Sherman Stein Packings of Rn by certain error spheres , 1984, IEEE Trans. Inf. Theory.

[12]  Pawel Rzazewski,et al.  Constructing Optimal k-Radius Sequences , 2016, SIAM J. Discret. Math..

[13]  Simon R. Blackburn The existence of k-radius sequences , 2012, J. Comb. Theory, Ser. A.

[14]  Dean Hickerson,et al.  Abelian groups and packing by semicrosses. , 1986 .

[15]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[16]  Sarit Buzaglo,et al.  Tilings With $n$ -Dimensional Chairs and Their Applications to Asymmetric Codes , 2013, IEEE Transactions on Information Theory.

[17]  Pawel Rzazewski,et al.  Sequences of Radius k for Complete Bipartite Graphs , 2016, WG.

[18]  Tao Zhang,et al.  New Results on Codes Correcting Single Error of Limited Magnitude for Flash Memory , 2016, IEEE Transactions on Information Theory.

[19]  Jerzy W. Jaromczyk,et al.  Sequences of Radius k: How to Fetch Many Huge Objects into Small Memory for Pairwise Computations , 2004, ISAAC.

[20]  Pawel Rzazewski,et al.  Sequences of radius k for complete bipartite graphs , 2017, Discret. Appl. Math..

[21]  Zbigniew Lonc,et al.  Sequences of large radius , 2014, Eur. J. Comb..

[22]  Bella Bose,et al.  Optimal, Systematic, $q$-Ary Codes Correcting All Asymmetric and Symmetric Errors of Limited Magnitude , 2010, IEEE Transactions on Information Theory.

[23]  Torleiv Kløve,et al.  Some Codes Correcting Unbalanced Errors of Limited Magnitude for Flash Memories , 2013, IEEE Transactions on Information Theory.

[24]  Xiande Zhang,et al.  Existence of Z-cyclic 3PDTWh(p) for Prime p ≡ 1 (mod 4) , 2007, Des. Codes Cryptogr..

[25]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[26]  Yin Tan,et al.  Universal cycles for minimum coverings of pairs by triples, with application to 2-radius sequences , 2010, Math. Comput..

[27]  Simon R. Blackburn,et al.  Constructing k-radius sequences , 2012, Math. Comput..

[28]  Meinard Müller,et al.  Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..

[29]  Pawel Rzazewski,et al.  Erratum: Constructing Optimal k-Radius Sequences , 2017, SIAM J. Discret. Math..

[30]  Torleiv Kløve,et al.  Systematic, Single Limited Magnitude Error Correcting Codes for Flash Memories , 2011, IEEE Transactions on Information Theory.

[31]  Moshe Schwartz,et al.  Quasi-Cross Lattice Tilings With Applications to Flash Memory , 2011, IEEE Transactions on Information Theory.

[32]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[33]  Jehoshua Bruck,et al.  Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories , 2010, IEEE Transactions on Information Theory.

[34]  Peter J. Slater,et al.  Sequentially additive graphs , 1983, Discret. Math..