θ(1) Time Algorithm for Structural Characterization of Multi-Leveled Images and its Applications on a Reconfigurable Mesh Computer

Given a multi-leveled image of size n × n, stored in a reconfigurable mesh computer of the same size one point per processing element (PE). In this paper, we propose a parallel algorithm for structural characterization of all the components of the image. The algorithm is based on the representation of component contour by straight line segments to reduce the volume of data processing. The resulted contours are simultaneously processed using the contour running approach. The pertinent data obtained after the component characterization are used in the filtering application and to develop an algorithm for the convex hull search for all the image components. Our algorithm is assigned to be implemented on a reconfigurable mesh computer and is of θ(1) time complexity.

[1]  Jelloul Elmesbahi Θ(1) algorithm for image component labeling in a mesh connected computer , 1991, IEEE Trans. Syst. Man Cybern..

[2]  John Oliensis Local Reproducible Smoothing Without Shrinkage , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Arnold W. M. Smeulders,et al.  Discrete Representation of Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Kaleem Siddiqi,et al.  Parts of visual form: computational aspects , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Massimo Maresca,et al.  Polymorphic-Torus Architecture for Computer Vision , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  O. Bouattane,et al.  A fast algorithm for ranking and perimeter computation on a reconfigurable mesh computer , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[7]  Hong Yan,et al.  Analysis of stroke structures of handwritten Chinese characters , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Martin A. Fischler,et al.  Locating Perceptually Salient Points on Planar Curves , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  AZRIEL ROSENFELD,et al.  Digital Straight Line Segments , 1974, IEEE Transactions on Computers.

[10]  Massimo Maresca,et al.  Polymorphic-Torus Network , 1989, IEEE Trans. Computers.

[11]  Its'hak Dinstein,et al.  Using Simple Decomposition for Smoothing and Feature Point Detection of Noisy Digital Curves , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Larry S. Davis,et al.  Efficient Parallel Processing of Image Contours , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Ponnuthurai N. Suganthan,et al.  Structural pattern recognition using genetic algorithms , 2002, Pattern Recognit..

[14]  Chul E. Kim On cellular straight line segments , 1982, Comput. Graph. Image Process..

[15]  Stephan Olariu,et al.  An O((log log n)2) Time Algorithm to Compute the Convex Hull of Sorted Points on Reconfigurable Meshes , 1998, IEEE Trans. Parallel Distributed Syst..

[16]  Omar Bouattane,et al.  A Fast Parallel Algorithm for Convex Hull Problem of Multi-Leveled Images , 2002, J. Intell. Robotic Syst..