On-line estimation of inertial parameters using a recursive total least-squares approach

The estimation of the ten inertial parameters of rigid loads, which are attached to manipulators, may benefit several robotics applications, e.g.: force control, object recognition, and pose estimation. These applications require sufficiently accurate, robust, and fast estimation of the inertial parameters. Existing approaches, however, do not allow for robust on-line estimation, since they use standard batch least-squares techniques, which ignore noise in the data matrix. The proposed approach, however, estimates the inertial parameters on-line and very fast (approx. 1.5s), while explicitly considering noise in the data matrix by a total least-squares approach. Apart from estimation equations and estimation approaches, the design of estimation trajectories is addressed in this paper. The performance of the proposed estimation approach is compared with the recursive ordinary least-squares (RLS) and the recursive instrumental variables (RIV) method. Experimental results clearly recommend the proposed recursive total least-squares approach (RTLS).

[1]  Anders Robertsson,et al.  Generalized contact force estimator for a robot manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[3]  Jozef Suchy,et al.  Dynamic force/torque measurement using a 12DOF sensor , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Friedrich M. Wahl,et al.  Executing assembly tasks specified by manipulation primitive nets , 2005, Adv. Robotics.

[5]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[6]  Robert J. Plemmons,et al.  Tracking the condition number for RLS in signal processing , 1992, Math. Control. Signals Syst..

[7]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[8]  Friedrich M. Wahl,et al.  Improving force control performance by computational elimination of non-contact forces/torques , 2008, 2008 IEEE International Conference on Robotics and Automation.

[9]  Jesse L. Barlow,et al.  Solving recursive TLS problems using the rank-revealing ULV decomposition , 1997 .

[10]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[11]  Friedrich M. Wahl,et al.  12D force and acceleration sensing: A helpful experience report on sensor characteristics , 2008, 2008 IEEE International Conference on Robotics and Automation.

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[14]  Hubert Hahn,et al.  Development of a measurement robot for identifying all inertia parameters of a rigid body in a single experiment , 2001, IEEE Trans. Control. Syst. Technol..

[15]  Friedrich M. Wahl,et al.  On-line rigid object recognition and pose estimation based on inertial parameters , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Jan Swevers,et al.  An Experimental Robot Load Identification Method for Industrial Application , 2002, ISER.

[17]  Friedrich M. Wahl,et al.  6D Force and Acceleration Sensor Fusion for Compliant Manipulation Control , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .