Numerical modeling of gas deposition and bi- directional surface-atmosphere exchanges in mesoscale air pollution systems

Accurate representation of surface processes such as vegetation has a significant role in air pollution models. In a variety of situations, the surface acts as a sink for the pollutants. Using pristine relations developed on fluid mechanical concepts, different formulations are discussed in this chapter to develop deposition flux estimates in air pollution models. An interesting scenario also develops when the soil and vegetation, in particular, acts as a source, in addition to being a sink for the gaseous material. Hence as a generalized framework in air pollution systems, the ability of the surface to generate bi-directional fluxes needs to be represented. Accordingly, different modeling techniques are presented ranging from regression equations, to modifications in the resistance pathways, and detailed eco-physiological leaf scaling approach. Finally, of particular relevance to mesoscale applications is the area averaging and regional mapping of the bi-directional fluxes. Accordingly different methods based on combination of surface measurements, remote sensing and model parameterizations are discussed.

[1]  I. R. Cowan,et al.  Calculations related to gas exchange. , 1987 .

[2]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[3]  M. Wesely,et al.  SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data , 1986 .

[4]  B. Hicks,et al.  A canopy stomatal resistance model for gaseous deposition to vegetated surfaces , 1987 .

[5]  Anthony Carpi,et al.  Application of a teflon™ dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil , 1998 .

[6]  T. Meyers,et al.  Estimation of dry deposition velocity using inferential models and site-specific meteorology: Uncertainty due to siting of meteorological towers , 1997 .

[7]  F. Pasquill,et al.  Atmospheric diffusion;: The dispersion of windborne material from industrial and other sources , 1974 .

[8]  Ki‐Hyun Kim,et al.  Foliar exchange of mercury vapor: Evidence for a compensation point , 1995 .

[9]  T. W. Horst A surface depletion model for deposition from a Gaussian plume , 1977 .

[10]  C. Jacobs,et al.  Direct impact of atmospheric CO2 enrichment on regional transpiration , 1994 .

[11]  Sethu Raman,et al.  A review and comparative evaluation of multilevel boundary layer parameterizations for first‐order and turbulent kinetic energy closure schemes , 1988 .

[12]  I. R. Cowan Regulation of Water Use in Relation to Carbon Gain in Higher Plants , 1982 .

[13]  G. Farquhar,et al.  On the Gaseous Exchange of Ammonia between Leaves and the Environment: Determination of the Ammonia Compensation Point. , 1980, Plant physiology.

[14]  M. Raupach,et al.  Maximum conductances for evaporation from global vegetation types , 1995 .

[15]  J. D. Tarpley,et al.  Global vegetation indices from the NOAA-7 meteorological satellite , 1984 .

[16]  Dennis D. Baldocchi,et al.  Intra-field variability of scalar flux densities across a transition between a desert and an irrigated potato field , 1995 .

[17]  Tilden P. Meyers,et al.  Modelling the plant canopy micrometeorology with higher-order closure principles , 1987 .

[18]  P. Waggoner,et al.  Removal of Ozone by Soil 1 , 1973 .

[19]  P. Waggoner,et al.  Removal of ozone from the atmosphere by soil and vegetation , 1974, Nature.

[20]  W. Asman,et al.  Factors influencing local dry deposition of gases with special reference to ammonia , 1998 .

[21]  M. A. Sutton,et al.  Plant—atmosphere exchange of ammonia , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[22]  I. R. Cowan,et al.  Stomatal conductance correlates with photosynthetic capacity , 1979, Nature.

[23]  D. Fowler,et al.  The Exchange of Ammonia Between the Atmosphere and Plant Communities , 1993 .

[24]  Z. Boybeyi Mesoscale Atmospheric Dispersion , 2001 .

[25]  Jan K. Schjoerring,et al.  Physiological parameters controlling plant-atmosphere ammonia exchange , 1998 .

[26]  D. Olszyk,et al.  Terpenes emitted from agricultural species found in California's Central Valley , 1991 .

[27]  A. C. Hill Vegetation: a sink for atmospheric pollutants. , 1971, Journal of the Air Pollution Control Association.

[28]  R. V. Aalst Dry Deposition of NoX , 1982 .

[29]  G. W. Thurtell,et al.  Ozone uptake by corn (Zea mays L.): a general approach , 1979 .

[30]  P. Jarvis,et al.  Do stomata respond to relative humidity , 1991 .

[31]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[32]  K. Alapaty,et al.  A dynamic statistical experiment for atmospheric interactions , 1997 .

[33]  C. Jacobs,et al.  Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions , 1996 .

[34]  Jean-Pierre Wigneron,et al.  An interactive vegetation SVAT model tested against data from six contrasting sites , 1998 .

[35]  Marc B. Parlange,et al.  NDVI relationship to monthly evaporation , 1998 .

[36]  R. Shaw,et al.  Development of a Coupled Leaf and Canopy Model for the Simulation of Plant-Atmosphere Interaction , 1996 .

[37]  J. A. Garland The dry deposition of sulphur dioxide to land and water surfaces , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  Ramakrishna R. Nemani,et al.  Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation , 1989 .

[39]  William P. Kustas,et al.  Estimates of Evapotranspiration with a One- and Two-Layer Model of Heat Transfer over Partial Canopy Cover , 1990 .

[40]  Harold A. Mooney,et al.  The Carbon Balance of Plants , 1972 .

[41]  K. Alapaty,et al.  Uncertainty in the Specification of Surface Characteristics, Part ii: Hierarchy of Interaction-Explicit Statistical Analysis , 1999 .

[42]  Dennis D. Baldocchi,et al.  On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective , 1998 .

[43]  D. F. Parkhurst,et al.  Stomatal responses to humidity in air and helox , 1991 .

[44]  William J. Massman,et al.  Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants , 1995 .

[45]  Piers J. Sellers,et al.  A Simplified Biosphere Model for Global Climate Studies , 1991 .

[46]  Ghassem R. Asrar,et al.  Theory and applications of optical remote sensing. , 1989 .

[47]  J. Erisman,et al.  Review of deposition monitoring methods , 1994 .

[48]  D. Vidal-Madjar,et al.  Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data , 1986 .

[49]  P. Reich,et al.  Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. , 1992, Tree physiology.

[50]  S. S. Joshi,et al.  Direct estimation of stomatal resistance for meteorological applications , 1997 .

[51]  T. Sharkey,et al.  Biological aspects of constructing volatile organic compound emission inventories , 1995 .

[52]  David Fowler,et al.  Turbulent transfer of sulphur dioxide to a wheat crop , 1979 .

[53]  G. Asrar,et al.  Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1 , 1984 .

[54]  David R. Miller,et al.  Formulation of bi-directional atmosphere-surface exchanges of elemental mercury , 1999 .

[55]  R. Draxler An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition , 1998 .

[56]  Mark A. Sutton,et al.  A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain , 1998 .

[57]  Toby N. Carlson,et al.  A stomatal resistance model illustrating plant vs. external control of transpiration , 1990 .

[58]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[59]  R. Monson,et al.  Isoprene emission from aspen leaves : influence of environment and relation to photosynthesis and photorespiration. , 1989, Plant physiology.

[60]  S. P. S. Arya,et al.  Introduction to micrometeorology , 1988 .

[61]  D. Baldocchi A lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy , 1992 .

[62]  P. F. Wareing,et al.  Potential Crop Production , 1971 .

[63]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[64]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[65]  J. Fuentes,et al.  A gas exchange system to study the effects of leaf surface wetness on the deposition of ozone , 1992 .

[66]  J. F. Clarke,et al.  A technique for estimating dry deposition velocities based on similarity with latent heat flux , 1999 .

[67]  John L. Monteith,et al.  Accommodation between transpiring vegetation and the convective boundary layer , 1995 .

[68]  B. Hicks,et al.  Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation , 1977 .

[69]  D. Baldocchi,et al.  Modelling dry deposition of SO2 , 1994 .

[70]  J. Goudriaan,et al.  The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange , 1988 .

[71]  C. Travis,et al.  Uptake of organics by aerial plant parts: A call for research , 1988 .

[72]  G. Sehmel Particle and gas dry deposition: A review , 1980 .

[73]  B. Underwood Dry deposition to a uniform canopy: Evaluation of a first-order-closure mathematical model , 1987 .

[74]  Jean-François Mahfouf,et al.  Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study , 1991 .

[75]  D. Baldocchi A comparative study of mass and energy exchange over a closed C3 (wheat) and an open C4 (corn) canopy: I. The partitioning of available energy into latent and sensible heat exchange , 1994 .

[76]  P. Harley,et al.  Environmental controls over isoprene emission in deciduous oak canopies. , 1997, Tree physiology.

[77]  T. Sharkey,et al.  Stomatal conductance and photosynthesis , 1982 .

[78]  William F. Fitzgerald,et al.  Is mercury increasing in the atmosphere? The need for an atmospheric mercury network (AMNET) , 1995 .

[79]  W. Gao,et al.  Air-surface exchange of H2O, CO2, and O3 at a tallgrass prairie in relation to remotely sensed vegetation indices , 1992 .

[80]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[81]  Jan Willem Erisman,et al.  Atmospheric deposition of ammonia to semi-natural vegetation in the Netherlands: Methods for mapping and evaluation , 1998 .

[82]  D. Charles-Edwards,et al.  A Model for Leaf Photosynthesis by C3 Plant Species , 1974 .

[83]  Eric L. Singsaas,et al.  Why plants emit isoprene , 1995, Nature.

[84]  Mark A. Sutton,et al.  Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange , 1998 .

[85]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[86]  P. Hanson,et al.  Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements , 1991 .

[87]  Jan Duyzer,et al.  Modelling land atmosphere exchange of gaseous oxides of nitrogen in Europe , 1994 .

[88]  C. Johansson,et al.  Dry deposition of nitrogen dioxide and ozone to coniferous forests , 1993 .

[89]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[90]  C. Justice,et al.  A revised land surface parameterization (SiB2) for GCMs. Part III: The greening of the Colorado State University general circulation model , 1996 .

[91]  F. Fehsenfeld,et al.  Natural Vegetation as a Source or Sink for Atmospheric Ammonia: A Case Study , 1992, Science.

[92]  T. Meyers,et al.  A comparison of models for deriving dry deposition fluxes of O3 and SO2 to a forest canopy , 1988 .

[93]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[94]  H. Schlichting Boundary Layer Theory , 1955 .

[95]  J. A. Businger,et al.  Evaluation of the Accuracy with Which Dry Deposition Can Be Measured with Current Micrometeorological Techniques. , 1987 .

[96]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[97]  Thomas Foken,et al.  A SVAT scheme for NO, NO2, and O3 — Model description and test results , 1996 .

[98]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[99]  J. L. Monteith,et al.  Implications of stomatal response to saturation deficit for the heat balance of vegetation , 1986 .

[100]  Daewon W. Byun,et al.  Simulation of Atmospheric Boundary Layer Processes Using Local- and Nonlocal-Closure Schemes , 1997 .

[101]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[102]  I. E. Woodrow,et al.  A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions , 1987 .

[103]  R. Monson,et al.  Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses , 1993 .

[104]  B. Finlayson‐Pitts,et al.  Atmospheric chemistry : fundamentals and experimental techniques , 1986 .

[105]  John L. Monteith,et al.  A reinterpretation of stomatal responses to humidity , 1995 .

[106]  L. Granat,et al.  Studies on the dry deposition of NO2 to coniferous species at low NO2 concentrations , 1994 .

[107]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[108]  Sethu Raman,et al.  Comparison of Four Different Stomatal Resistance Schemes Using FIFE Observations , 1997 .

[109]  W. Chameides,et al.  The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. , 1988, Science.

[110]  Mark A. Sutton,et al.  Dry deposition of reduced nitrogen , 1994 .

[111]  P. Hanson,et al.  NO2 deposition to elements representative of a forest landscape , 1989 .

[112]  R. L. Dougherty,et al.  Applying an empirical model of stomatal conductance to three C-4 grasses , 1994 .

[113]  M. R. Raupach Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: some implications of mixed-layer dynamics , 1991 .

[114]  K. Alapaty,et al.  Comparison of four different stomatal resistance schemes using FIFE data. Part II: Analysis of terrestrial biospheric-atmospheric interactions , 1998 .

[115]  A Coupled Soil-Vegetation Scheme: Description, Parameters, Validation, and, Sensitivity Studies , 1994 .

[116]  G. Farquhar,et al.  Gaseous nitrogen losses from plants , 1983 .

[117]  E. Schulze,et al.  Relationships among Maximum Stomatal Conductance, Ecosystem Surface Conductance, Carbon Assimilation Rate, and Plant Nitrogen Nutrition: A Global Ecology Scaling Exercise , 1994 .

[118]  S. Verma,et al.  Modeling canopy photosynthesis: scaling up from a leaf to canopy in a temperate grassland ecosystem , 1991 .

[119]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[120]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[121]  H. Judeikis,et al.  Laboratory measurements of NO and NO2 depositions onto soil and cement surfaces , 1978 .

[122]  James G. Droppo,et al.  Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods , 1985 .

[123]  J. Cihlar,et al.  Relation between the normalized difference vegetation index and ecological variables , 1991 .

[124]  C. Field,et al.  A reanalysis using improved leaf models and a new canopy integration scheme , 1992 .

[125]  W. Brutsaert Evaporation into the atmosphere , 1982 .

[126]  R. P. Hosker,et al.  Review: Atmospheric deposition and plant assimilation of gases and particles , 1982 .

[127]  I. C. Prentice,et al.  An integrated biosphere model of land surface processes , 1996 .

[128]  J. H. Bennett,et al.  Absorption of Gaseous Air Pollutants By a Standardized Plant Canopy , 1973 .

[129]  J. Monteith CHAPTER 7 – Gas Exchange in Plant Communities , 1963 .

[130]  E. Lemon,et al.  Ammonia Exchange at the Land Surface1 , 1980 .

[131]  Mark A. Sutton,et al.  Long term measurements of the land-atmosphere exchange of ammonia over moorland , 1998 .

[132]  J. Padro Observed characteristics of the dry deposition velocity of O3 and SO2 above a wet deciduous forest , 1994 .

[133]  R. Avissar,et al.  A model to simulate response of plant stomata to environmental conditions , 1985 .

[134]  Yoram Cohen,et al.  Mass transfer across wind-sheared interfaces , 1985 .

[135]  L. Barrie,et al.  A literature review of dry deposition of oxides of sulphur and nitrogen with emphasis on long-range transport modelling in North America , 1986 .

[136]  J. Goudriaan,et al.  Photosynthesis, CO2 and Plant Production , 1985 .

[137]  P. R. Owen,et al.  Heat transfer across rough surfaces , 1963, Journal of Fluid Mechanics.

[138]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[139]  Compton J. Tucker,et al.  Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .

[140]  H. Mooney,et al.  Exchange of Materials Between Terrestrial Ecosystems and the Atmosphere , 1987, Science.

[141]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[142]  Paulette Middleton,et al.  A three‐dimensional Eulerian acid deposition model: Physical concepts and formulation , 1987 .

[143]  P. M. Seevers,et al.  Evapotranspiration estimation using a normalized difference vegetation index transformation of satellite data , 1994 .

[144]  J. Parlange,et al.  Boundary layer resistance and temperature distribution on still and flapping leaves: I. Theory and laboratory experiments. , 1971, Plant physiology.

[145]  F. Meinzer,et al.  Stomatal response to humidity in a sugarcane field: simultaneous porometric and micrometeorological measurements , 1990 .

[146]  P. Sellers Canopy reflectance, photosynthesis, and transpiration. II. the role of biophysics in the linearity of their interdependence , 1987 .

[147]  I. R. Cowan,et al.  Transfer processes in plant canopies in relation to stomatal characteristics. , 1987 .

[148]  P. Wetzel,et al.  Evapotranspiration from Nonuniform Surfaces: A First Approach for Short-Term Numerical Weather Prediction , 1988 .

[149]  M. Wesely,et al.  Modification of coded parametrizations of surface resistances to gaseous dry deposition , 1996 .

[150]  R. Draxler NOAA Technical Memorandum ERL ARL-224 DESCRIPTION OF THE HYSPLIT_4 MODELING SYSTEM , 1999 .

[151]  J. A. Garland,et al.  Absorption of peroxy acetyl nitrate and ozone by natural surfaces , 1976 .

[152]  S. Arya Air Pollution Meteorology and Dispersion , 1998 .