Topological Microstructure Analysis Using Persistence Landscapes

[1]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[2]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[3]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[4]  H. E. Cook,et al.  Brownian motion in spinodal decomposition , 1970 .

[5]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[6]  C. Mallows A Note on Asymptotic Joint Normality , 1972 .

[7]  Evelyn Sander,et al.  Monte Carlo Simulations for Spinodal Decomposition , 1999 .

[8]  Evelyn Sander,et al.  Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..

[9]  Dirk Blömker,et al.  Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .

[10]  Thomas Wanner,et al.  Maximum norms of random sums and transient pattern formation , 2003 .

[11]  坂上 貴之 書評 Computational Homology , 2005 .

[12]  Konstantin Mischaikow,et al.  Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .

[13]  Dirk Blömker,et al.  Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .

[14]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[15]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[16]  William D. Kalies,et al.  Verified Homology Computations for Nodal Domains , 2009, Multiscale Model. Simul..

[17]  G. Rohrer,et al.  Topological characteristics of plane sections of polycrystals , 2010 .

[18]  Marian Mrozek,et al.  Coreduction homology algorithm for inclusions and persistent homology , 2010, Comput. Math. Appl..

[19]  E. Fuller,et al.  Homology metrics for microstructure response fields in polycrystals , 2010 .

[20]  Pawel Dlotko,et al.  Coreduction Homology Algorithm for Regular CW-Complexes , 2011, Discret. Comput. Geom..

[21]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[22]  Evelyn Sander,et al.  The Dynamics of Nucleation in Stochastic Cahn-Morral Systems , 2011, SIAM J. Appl. Dyn. Syst..

[23]  Konstantin Mischaikow,et al.  Topology of force networks in compressed granular media , 2012 .

[24]  Peter Bubenik,et al.  Statistical topology using persistence landscapes , 2012, ArXiv.

[25]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[26]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[27]  Pawel Dlotko,et al.  A Randomized Subdivision Algorithm for Determining the Topology of Nodal Sets , 2013, SIAM J. Sci. Comput..

[28]  Sayan Mukherjee,et al.  Probabilistic Fréchet Means and Statistics on Vineyards , 2013, ArXiv.

[29]  M. Kramár,et al.  Persistence of force networks in compressed granular media. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Emerson G. Escolar,et al.  Persistent homology and many-body atomic structure for medium-range order in the glass , 2015, Nanotechnology.

[31]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[32]  M. Gameiro,et al.  A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.

[33]  Akihiko Hirata,et al.  Description of Medium-Range Order in Amorphous Structures by Persistent Homology , 2015 .

[34]  T. Wanner,et al.  Topological Analysis of the Diblock Copolymer Equation , 2016 .

[35]  Pawel Dlotko,et al.  A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..

[36]  Ulrich Bauer,et al.  Phat - Persistent Homology Algorithms Toolbox , 2014, J. Symb. Comput..