Topological Microstructure Analysis Using Persistence Landscapes
暂无分享,去创建一个
[1] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[2] John W. Cahn,et al. Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .
[3] John W. Cahn,et al. Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .
[4] H. E. Cook,et al. Brownian motion in spinodal decomposition , 1970 .
[5] James S. Langer,et al. Theory of spinodal decomposition in alloys , 1971 .
[6] C. Mallows. A Note on Asymptotic Joint Normality , 1972 .
[7] Evelyn Sander,et al. Monte Carlo Simulations for Spinodal Decomposition , 1999 .
[8] Evelyn Sander,et al. Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..
[9] Dirk Blömker,et al. Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .
[10] Thomas Wanner,et al. Maximum norms of random sums and transient pattern formation , 2003 .
[11] 坂上 貴之. 書評 Computational Homology , 2005 .
[12] Konstantin Mischaikow,et al. Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .
[13] Dirk Blömker,et al. Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .
[14] E. Favvas,et al. What is spinodal decomposition , 2008 .
[15] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[16] William D. Kalies,et al. Verified Homology Computations for Nodal Domains , 2009, Multiscale Model. Simul..
[17] G. Rohrer,et al. Topological characteristics of plane sections of polycrystals , 2010 .
[18] Marian Mrozek,et al. Coreduction homology algorithm for inclusions and persistent homology , 2010, Comput. Math. Appl..
[19] E. Fuller,et al. Homology metrics for microstructure response fields in polycrystals , 2010 .
[20] Pawel Dlotko,et al. Coreduction Homology Algorithm for Regular CW-Complexes , 2011, Discret. Comput. Geom..
[21] S. Mukherjee,et al. Probability measures on the space of persistence diagrams , 2011 .
[22] Evelyn Sander,et al. The Dynamics of Nucleation in Stochastic Cahn-Morral Systems , 2011, SIAM J. Appl. Dyn. Syst..
[23] Konstantin Mischaikow,et al. Topology of force networks in compressed granular media , 2012 .
[24] Peter Bubenik,et al. Statistical topology using persistence landscapes , 2012, ArXiv.
[25] Ameet Talwalkar,et al. Foundations of Machine Learning , 2012, Adaptive computation and machine learning.
[26] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[27] Pawel Dlotko,et al. A Randomized Subdivision Algorithm for Determining the Topology of Nodal Sets , 2013, SIAM J. Sci. Comput..
[28] Sayan Mukherjee,et al. Probabilistic Fréchet Means and Statistics on Vineyards , 2013, ArXiv.
[29] M. Kramár,et al. Persistence of force networks in compressed granular media. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] Emerson G. Escolar,et al. Persistent homology and many-body atomic structure for medium-range order in the glass , 2015, Nanotechnology.
[31] Peter Bubenik,et al. Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..
[32] M. Gameiro,et al. A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.
[33] Akihiko Hirata,et al. Description of Medium-Range Order in Amorphous Structures by Persistent Homology , 2015 .
[34] T. Wanner,et al. Topological Analysis of the Diblock Copolymer Equation , 2016 .
[35] Pawel Dlotko,et al. A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..
[36] Ulrich Bauer,et al. Phat - Persistent Homology Algorithms Toolbox , 2014, J. Symb. Comput..