Mixed Variational Formulation and Numerical Analysis of Thermally Coupled Nonlinear Darcy Flows
暂无分享,去创建一个
[1] Jacques Baranger,et al. STATIONARY SOLUTIONS TO A QUASI-NEWTONIAN FLOW WITH VISCOUS HEATING , 1995 .
[2] W. Allegretto,et al. C a Ω¯solutions of a class of nonlinear degenerate elliptic systems arising in the thermistor problem , 1991 .
[3] Walter Allegretto,et al. A non-local thermistor problem , 1995 .
[4] Stéphane Gerbi,et al. Existence of a solution to a coupled elliptic system with a Signorini condition , 1994 .
[5] Giovanni Cimatti. A Bound for the Temperature in the Thermistor Problem , 1988 .
[6] Robert P. Gilbert,et al. Nonlinear systems arising from nonisothermal, non-Newtonian Hele-Shaw flows in the presence of body forces and sources , 2002 .
[7] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[8] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[9] Xijun Yu,et al. Thermally coupled quasi-Newtonian flows: Analysis and computation , 2011, J. Comput. Appl. Math..
[10] W. Allegretto,et al. Solutions for the microsensor thermistor equations in the small bias case , 1993 .
[11] Giovanni Cimatti,et al. Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor , 1988 .
[12] Xijun Yu,et al. Mixed discontinuous Galerkin analysis of thermally nonlinear coupled problem , 2011 .
[13] Robert P. Gilbert,et al. Nonisothermal, nonNewtonian Hele-Shaw flows, part II: asymptotics and existence of weak solutions , 1996 .
[14] Abimael F. D. Loula,et al. Finite element analysis of a coupled thermally dependent viscosity flow problem , 2007 .
[15] Carsten Ebmeyer. Global Regularity in Sobolev Spaces for Elliptic Problems with p-structure on Bounded Domains , 2005 .
[16] Mohamed Farhloul,et al. On a mixed finite element method for the p-Laplacian , 2000 .
[17] Danping Yang,et al. Finite element approximation to nonlinear coupled thermal problem , 2009 .
[18] D. Sandri,et al. Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .
[19] J. Rappaz,et al. Numerical Modeling of Induction-Heating for 2-Dimensional Geometries , 1993 .
[20] W. Allegretto,et al. Existence of solutions for the time-dependent thermistor equations , 1992 .
[21] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[22] Jiang Zhu. Finite element analysis of thermally coupled nonlinear Darcy flows , 2010 .
[23] Charles M. Elliott,et al. A finite element model for the time-dependent Joule heating problem , 1995 .
[24] Jean E. Roberts,et al. Global estimates for mixed methods for second order elliptic equations , 1985 .
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] Meir Shillor,et al. Stationary Solutions to the Thermistor Problem , 1993 .
[27] Grzegorz Łukaszewicz,et al. The stationary Stefan problem with convection governed by a non-linear Darcy's law , 1999 .
[28] C. Ebmeyer,et al. Global regularity in Nikolskij spaces for elliptic equations with p-structure on polyhedral domains , 2005 .
[29] Abimael F. D. Loula,et al. Mixed finite element analysis of a thermally nonlinear coupled problem , 2006 .
[30] Ulrich Eisele,et al. Introduction to Polymer Physics , 1990 .
[31] Giovanni Cimatti,et al. Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions , 1989 .