Mixed Variational Formulation and Numerical Analysis of Thermally Coupled Nonlinear Darcy Flows

A mixed variational formulation and its finite element approximate procedure combined with a fixed point algorithm is presented for solving a thermally coupled nonlinear Darcy flow problem. Existence and uniqueness of the solution to the nonlinear mixed variational formulation are established. A more general result on uniqueness of the continuous problem is presented. Numerical analysis of the finite element approximation with the corresponding error estimates is given. Numerical results are presented confirming the expected rates of convergence and illustrating the influence of the exponent of the nonlinear power law constitutive equation.

[1]  Jacques Baranger,et al.  STATIONARY SOLUTIONS TO A QUASI-NEWTONIAN FLOW WITH VISCOUS HEATING , 1995 .

[2]  W. Allegretto,et al.  C a Ω¯solutions of a class of nonlinear degenerate elliptic systems arising in the thermistor problem , 1991 .

[3]  Walter Allegretto,et al.  A non-local thermistor problem , 1995 .

[4]  Stéphane Gerbi,et al.  Existence of a solution to a coupled elliptic system with a Signorini condition , 1994 .

[5]  Giovanni Cimatti A Bound for the Temperature in the Thermistor Problem , 1988 .

[6]  Robert P. Gilbert,et al.  Nonlinear systems arising from nonisothermal, non-Newtonian Hele-Shaw flows in the presence of body forces and sources , 2002 .

[7]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[8]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[9]  Xijun Yu,et al.  Thermally coupled quasi-Newtonian flows: Analysis and computation , 2011, J. Comput. Appl. Math..

[10]  W. Allegretto,et al.  Solutions for the microsensor thermistor equations in the small bias case , 1993 .

[11]  Giovanni Cimatti,et al.  Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor , 1988 .

[12]  Xijun Yu,et al.  Mixed discontinuous Galerkin analysis of thermally nonlinear coupled problem , 2011 .

[13]  Robert P. Gilbert,et al.  Nonisothermal, nonNewtonian Hele-Shaw flows, part II: asymptotics and existence of weak solutions , 1996 .

[14]  Abimael F. D. Loula,et al.  Finite element analysis of a coupled thermally dependent viscosity flow problem , 2007 .

[15]  Carsten Ebmeyer Global Regularity in Sobolev Spaces for Elliptic Problems with p-structure on Bounded Domains , 2005 .

[16]  Mohamed Farhloul,et al.  On a mixed finite element method for the p-Laplacian , 2000 .

[17]  Danping Yang,et al.  Finite element approximation to nonlinear coupled thermal problem , 2009 .

[18]  D. Sandri,et al.  Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .

[19]  J. Rappaz,et al.  Numerical Modeling of Induction-Heating for 2-Dimensional Geometries , 1993 .

[20]  W. Allegretto,et al.  Existence of solutions for the time-dependent thermistor equations , 1992 .

[21]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[22]  Jiang Zhu Finite element analysis of thermally coupled nonlinear Darcy flows , 2010 .

[23]  Charles M. Elliott,et al.  A finite element model for the time-dependent Joule heating problem , 1995 .

[24]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Meir Shillor,et al.  Stationary Solutions to the Thermistor Problem , 1993 .

[27]  Grzegorz Łukaszewicz,et al.  The stationary Stefan problem with convection governed by a non-linear Darcy's law , 1999 .

[28]  C. Ebmeyer,et al.  Global regularity in Nikolskij spaces for elliptic equations with p-structure on polyhedral domains , 2005 .

[29]  Abimael F. D. Loula,et al.  Mixed finite element analysis of a thermally nonlinear coupled problem , 2006 .

[30]  Ulrich Eisele,et al.  Introduction to Polymer Physics , 1990 .

[31]  Giovanni Cimatti,et al.  Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions , 1989 .