Uncertainty propagation in CFD using polynomial chaos decomposition

[1]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[2]  Habib N. Najm,et al.  Natural Convection in a Closed Cavity under Stochastic Non-Boussinesq Conditions , 2005, SIAM J. Sci. Comput..

[3]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[4]  T. A. Zang,et al.  Uncertainty Propagation for a Turbulent, Compressible Nozzle Flow Using Stochastic Methods , 2004 .

[5]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[6]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[7]  Knut Petras,et al.  Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.

[8]  Hermann G. Matthies,et al.  Sparse Quadrature as an Alternative to Monte Carlo for Stochastic Finite Element Techniques , 2003 .

[9]  Habib N. Najm,et al.  A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .

[10]  Habib N. Najm,et al.  Uncertainty quantification in reacting flow modeling. , 2003 .

[11]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[12]  M. Yousuff Hussaini,et al.  Uncertainty Propagation for Turbulent, Compressible Flow in a Quasi-1D Nozzle Using Stochastic Methods , 2003 .

[13]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[14]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[15]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[16]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[17]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[18]  Omar M. Knio,et al.  A Probabilistic Framework for the Validation and Certification of Computer Simulations , 2000 .

[19]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[20]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[21]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[22]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[23]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[24]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[25]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[26]  Michał Kleiber,et al.  Stochastic finite element modelling in linear transient heat transfer , 1997 .

[27]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[28]  K. Ritter,et al.  The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .

[29]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[30]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[31]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[32]  P. Le Quéré,et al.  A Chebyshev collocation algorithm for 2D non-Boussinesq convection , 1992 .

[33]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[34]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[36]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[37]  S. Paolucci,et al.  Natural convection in an enclosed vertical air layer with large horizontal temperature differences , 1986, Journal of Fluid Mechanics.

[38]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[39]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[40]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[41]  G. Kallianpur Stochastic filtering theory , 1979, Advances in Applied Probability.

[42]  A. Chorin Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.

[43]  G. H. Canavan,et al.  Relationship between a Wiener–Hermite expansion and an energy cascade , 1970, Journal of Fluid Mechanics.

[44]  W. Meecham,et al.  Use of the Wiener—Hermite expansion for nearly normal turbulence , 1968, Journal of Fluid Mechanics.

[45]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .