The concept of animals' trajectories from a data analysis perspective

Abstract The Global Positioning System (GPS) has been increasingly used during the past decade to monitor the movements of free-ranging animals. This technology allows to automatically relocate fitted animals, which often results into a high-frequency sampling of their trajectory during the study period. However, depending on the objective of trajectory analysis, this study may quickly become difficult, due to the lack of well designed computer programs. For example, the trajectory may be built by several “parts” corresponding to different behaviours of the animal, and the aim of the analysis could be to identify the different parts, and thereby the different activities, based on the properties of the trajectory. This complex task needs to be performed into a flexible computing environment, to facilitate exploratory analysis of its properties. In this paper, we present a new class of object of the R software, the class “ltraj” included in the package adehabitat, allowing the analysis of animals' trajectories. We developed this class of data after an extensive review of the literature on the analysis of animal movements. This class of data facilitates the computation of descriptive parameters of the trajectory (such as the relative angles between successive moves, distance between successive relocations, etc.), graphical exploration of these parameters, as well a numerous tests and analyses developed in the literature (first passage time, trajectory partitioning, etc.). Finally, this package also contains numerous examples of animal trajectories, and a working example illustrating the use of the package.

[1]  David R. Brillinger,et al.  Employing stochastic differential equations to model wildlife motion , 2002 .

[2]  Raymond B. Iglay,et al.  A Comparison of Two Methods for Studying Box Turtle Movements , 2006 .

[3]  D. Brillinger,et al.  An exploratory data analysis (EDA) of the paths of moving animals , 2004 .

[4]  D. Claussen,et al.  THREAD TRAILING OF TURTLES : METHODS FOR EVALUATING SPATIAL MOVEMENTS AND PATHWAY STRUCTURE , 1998 .

[5]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[6]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[7]  Maurice Kendall,et al.  Time Series , 2009, Encyclopedia of Biometrics.

[8]  S. L. Lima,et al.  SEARCH STRATEGIES FOR LANDSCAPE‐LEVEL INTERPATCH MOVEMENTS , 1999 .

[9]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[10]  H. Preisler,et al.  Modeling animal movements using stochastic differential equations , 2004 .

[11]  Manuela Royer-Carenzi,et al.  The exploratory analysis of autocorrelation in animal-movement studies , 2010, Ecological Research.

[12]  Jarle Tufto,et al.  Should wildlife biologists use free software? , 2005 .

[13]  Simon Benhamou Le domaine vital des mammifères terrestres , 1998 .

[14]  H. Larralde,et al.  Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.

[15]  Daniel Maillard Occupation et utilisation de la garrigue et du vignoble méditerranéens par le sanglier (Sus scrofa L. ) , 1996 .

[16]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[17]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[18]  Paul G. Blackwell,et al.  Random diffusion models for animal movement , 1997 .

[19]  Peter Kareiva,et al.  THE SEARCH FOR RESOURCES BY CABBAGE BUTTERFLIES (PIERIS RAPAE): ECOLOGICAL CONSEQUENCES AND ADAPTIVE SIGNIFICANCE OF MARKOVIAN MOVEMENTS IN A PATCHY ENVIRONMENT' , 1984 .

[20]  Clément Calenge,et al.  The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals , 2006 .

[21]  Mac Schwager,et al.  Robust classification of animal tracking data , 2007 .

[22]  Chris J. Johnson,et al.  Movement parameters of ungulates and scale‐specific responses to the environment , 2002 .

[23]  David Saltz,et al.  Forging at Different Spatial Scales: Dorcas Gazelles Foraging for Lilies in the Negev Desert , 1994 .

[24]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[25]  Darcy R. Visscher,et al.  Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk , 2005, Landscape Ecology.

[26]  Tabitha A. Graves,et al.  Understanding the Causes of Missed Global Positioning System Telemetry Fixes , 2006 .

[27]  P. Diggle Time Series: A Biostatistical Introduction , 1990 .

[28]  Donna Delparte,et al.  Effects of radio‐collar position and orientation on GPS radio‐collar performance, and the implications of PDOP in data screening , 2005 .

[29]  Miles L. Logsdon,et al.  Fractal analysis of narwhal space use patterns. , 2004, Zoology.

[30]  S. Benhamou How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? , 2004, Journal of theoretical biology.

[32]  Peter Turchin,et al.  Fractal Analyses of Animal Movement: A Critique , 1996 .

[33]  Gordon B. Stenhouse,et al.  Removing GPS collar bias in habitat selection studies , 2004 .

[34]  P. Turchin Quantitative Analysis Of Movement , 1998 .

[35]  Torkild Tveraa,et al.  USING FIRST‐PASSAGE TIME IN THE ANALYSIS OF AREA‐RESTRICTED SEARCH AND HABITAT SELECTION , 2003 .

[36]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[37]  J. Wiens,et al.  Animal movements and population dynamics in heterogeneous landscapes , 1992, Landscape Ecology.

[38]  Nicolas Schtickzelle,et al.  Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. , 2003, The Journal of animal ecology.

[39]  W. Robinson,et al.  Use of Fluorescent Powder for Tracking American Woodcock Broods , 1995 .

[40]  Rhondda Jones,et al.  MOVEMENT PATTERNS AND EGG DISTRIBUTION IN CABBAGE BUTTERFLIES , 1977 .

[41]  J. A. Schaefer,et al.  Caribou movement as a correlated random walk , 2000, Oecologia.

[42]  Chris J. Johnson,et al.  A MULTISCALE BEHAVIORAL APPROACH TO UNDERSTANDING THE MOVEMENTS OF WOODLAND CARIBOU , 2002 .

[43]  Veronica A. J. Doerr,et al.  Dispersal range analysis: quantifying individual variation in dispersal behaviour , 2004, Oecologia.

[44]  C. Schultz,et al.  Dispersal Behavior and Its Implications for Reserve Design in a Rare Oregon Butterfly , 1998 .

[45]  Ian D. Jonsen,et al.  META‐ANALYSIS OF ANIMAL MOVEMENT USING STATE‐SPACE MODELS , 2003 .

[46]  Vilis O. Nams,et al.  Fractal analysis measures habitat use at different spatial scales: an example with American marten , 2004 .

[47]  SIMON BENHAMOU,et al.  Path integration in dogs , 1998, Animal Behaviour.

[48]  John M. Chambers,et al.  Programming With Data , 1998 .

[49]  Stephen P. Ellner,et al.  SCALING UP ANIMAL MOVEMENTS IN HETEROGENEOUS LANDSCAPES: THE IMPORTANCE OF BEHAVIOR , 2002 .

[50]  Alastair Franke,et al.  Analysis of movements and behavior of caribou (Rangifer tarandus) using hidden Markov models , 2004 .

[51]  L. M. Marsh,et al.  The form and consequences of random walk movement models , 1988 .

[52]  Magnus Wiktorsson,et al.  Modelling the movement of a soil insect. , 2004, Journal of theoretical biology.

[53]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[54]  S. Benhamou,et al.  Spatial analysis of animals' movements using a correlated random walk model* , 1988 .

[55]  D. B. Siniff,et al.  A Simulation Model of Animal Movement Patterns , 1969 .