Modeling Growth in Biological Materials

The biomechanical modeling of growing tissues has recently become an area of intense interest. In particular, the interplay between growth patterns and mechanical stress is of great importance, with possible applications to arterial mechanics, embryo morphogenesis, tumor development, and bone remodeling. This review aims to give an overview of the theories that have been used to model these phenomena, categorized according to whether the tissue is considered as a continuum object or a collection of cells. Among the continuum models discussed is the deformation gradient decomposition method, which allows a residual stress field to develop from an incompatible growth field. The cell-based models are further subdivided into cellular automata, center-dynamics, and vertex-dynamics models. Of these the second two are considered in more detail, especially with regard to their treatment of cell-cell interactions and cell division. The review concludes by assessing the prospects for reconciliation between these two fundamentally different approaches to tissue growth, and by identifying possible avenues for further research.

[1]  F H Hsu,et al.  The influences of mechanical loads on the form of a growing elastic body. , 1968, Journal of biomechanics.

[2]  M. Loeffler,et al.  Individual-based models to growth and folding in one-layered tissues: intestinal crypts and early development , 2001 .

[3]  D. Drasdo,et al.  Buckling instabilities of one-layered growing tissues. , 2000, Physical review letters.

[4]  Joseph W Freeman,et al.  Collagen self-assembly and the development of tendon mechanical properties. , 2003, Journal of biomechanics.

[5]  R. Kenedi,et al.  Tissue mechanics. , 1975, Physics in medicine and biology.

[6]  P. Maini,et al.  Metabolic changes during carcinogenesis: potential impact on invasiveness. , 2007, Journal of theoretical biology.

[7]  X. Zheng,et al.  A cellular automaton model of cancerous growth. , 1993, Journal of theoretical biology.

[8]  A. Deutsch,et al.  Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. , 2002, In silico biology.

[9]  D Ambrosi,et al.  The role of stress in the growth of a multicell spheroid , 2004, Journal of mathematical biology.

[10]  G. Maugin Geometry and thermomechanics of structural rearrangements: Ekkehart Kröner's legacy Plenary lecture presented at the 80th Annual GAMM Conference, Augsburg, 25‐28 March 2002 , 2003 .

[11]  Donald E. Ingber,et al.  Jcb: Article Introduction , 2002 .

[12]  Richard Skalak,et al.  Growth as A Finite Displacement Field , 1981 .

[13]  E. Farge Mechanical Induction of Twist in the Drosophila Foregut/Stomodeal Primordium , 2003, Current Biology.

[14]  F. Yamamoto,et al.  An Overview of the Biology of Reaction Wood Formation , 2007 .

[15]  R. N. Vaishnav,et al.  Residual stress and strain in aortic segments. , 1987, Journal of biomechanics.

[16]  Y C Fung,et al.  Three-dimensional stress distribution in arteries. , 1983, Journal of biomechanical engineering.

[17]  J. Drummond A Comparative Study of Tumour and Normal Tissue Growth. , 1917, The Biochemical journal.

[18]  R. Crystal,et al.  Lung growth after unilateral pneumonectomy: quantitation of collagen synthesis and content. , 1975, The American review of respiratory disease.

[19]  O. Hamill,et al.  Molecular basis of mechanotransduction in living cells. , 2001, Physiological reviews.

[20]  E Kuhl,et al.  Computational modeling of arterial wall growth , 2007, Biomechanics and modeling in mechanobiology.

[21]  A. Curtis,et al.  The control of cell division by tension or diffusion , 1978, Nature.

[22]  G Mirams,et al.  A computational study of discrete mechanical tissue models , 2009, Physical biology.

[23]  Ben D MacArthur,et al.  Residual stress generation and necrosis formation in multi-cell tumour spheroids , 2004, Journal of mathematical biology.

[24]  M. Loeffler,et al.  Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. , 2005, Biophysical journal.

[25]  E F Ryder,et al.  Graphical simulation of early development of the cerebral cortex. , 1999, Computer methods and programs in biomedicine.

[26]  F. Pauwels,et al.  [A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure]. , 1960, Zeitschrift fur Anatomie und Entwicklungsgeschichte.

[27]  S T Quek,et al.  Mechanical models for living cells--a review. , 2006, Journal of biomechanics.

[28]  B. Alberts,et al.  Molecular Biology of the Cell (Fifth Edition) , 2008 .

[29]  W C Van Buskirk,et al.  Surface bone remodeling induced by a medullary pin. , 1979, Journal of biomechanics.

[30]  D. Ingber,et al.  Cellular mechanotransduction: putting all the pieces together again , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  T. Lecuit,et al.  Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis , 2007, Nature Reviews Molecular Cell Biology.

[32]  H. Frost The Laws of Bone Structure , 1965 .

[33]  Stephen Turner Using cell potential energy to model the dynamics of adhesive biological cells. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  S. Klisch,et al.  A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments , 2005, Biomechanics and modeling in mechanobiology.

[35]  G Wayne Brodland,et al.  Computer simulations of mitosis and interdependencies between mitosis orientation, cell shape and epithelia reshaping. , 2002, Journal of biomechanics.

[36]  J. Folkman,et al.  Role of cell shape in growth control , 1978, Nature.

[37]  G. Eaves The invasive growth of malignant tumours as a purely mechanical process , 1973, The Journal of pathology.

[38]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[39]  S C Cowin,et al.  Bone stress adaptation models. , 1993, Journal of biomechanical engineering.

[40]  C. Verdier Review Article: Rheological Properties of Living Materials. From Cells to Tissues , 2003 .

[41]  D. Carter,et al.  Important concepts of mechanical regulation of bone formation and growth , 2005 .

[42]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[43]  G. Oster,et al.  The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. , 1990, Development.

[44]  Dr. Robert R. Archer,et al.  Growth Stresses and Strains in Trees , 1987, Springer Series in Wood Science.

[45]  G W Brodland,et al.  Cell-level finite element studies of viscous cells in planar aggregates. , 2000, Journal of biomechanical engineering.

[46]  D. McElwain,et al.  The role of mechanical host-tumour interactions in the collapse of tumour blood vessels and tumour growth dynamics. , 2006, Journal of theoretical biology.

[47]  Paul Steinmann,et al.  Computational Modeling of Growth , 2022 .

[48]  Hans G Othmer,et al.  How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. , 2004, Journal of theoretical biology.

[49]  P. Maini,et al.  Modelling aspects of cancer dynamics: a review , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Alain Goriely,et al.  Tissue tension and axial growth of cylindrical structures in plants and elastic tissues , 2008 .

[51]  Larry A Taber,et al.  Biophysical mechanisms of cardiac looping. , 2006, The International journal of developmental biology.

[52]  L. Taber Biomechanics of Growth, Remodeling, and Morphogenesis , 1995 .

[53]  J. Nowinski Mechanics of growing materials , 1978 .

[54]  Talbot Jm,et al.  Muscle atrophy during space flight: research needs and opportunities. , 1985 .

[55]  Stephanie Forrest,et al.  Modeling Intercellular Interactions in Early Mycobacterium Infection , 2006, Bulletin of mathematical biology.

[56]  Jean Paul Thiery,et al.  Johnson-Kendall-Roberts theory applied to living cells. , 2005, Physical review letters.

[57]  Gérard Brugal,et al.  A Proliferation Control Network Model: The Simulation of Two-Dimensional Epithelial Homeostasis , 2001, Acta biotheoretica.

[58]  P. A. Watson,et al.  Function follows form: generation of intracellular signals by cell deformation , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[59]  G Pennati,et al.  An Axisymmetric Computational Model of Skin Expansion and Growth , 2007, Biomechanics and modeling in mechanobiology.

[60]  Colin J. Wiebe,et al.  Mechanical Effects of Cell Anisotropy on Epithelia , 2004, Computer methods in biomechanics and biomedical engineering.

[61]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[62]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[63]  John P Wikswo,et al.  Measurement Techniques for Cellular Biomechanics In Vitro , 2008, Experimental biology and medicine.

[64]  S Torquato,et al.  Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. , 2000, Journal of theoretical biology.

[65]  Pasquale Ciarletta,et al.  Morphogenesis of thin hyperelastic plates: A constitutive theory of biological growth in the Föppl-von Kármán limit , 2009 .

[66]  H Honda,et al.  A computer simulation of geometrical configurations during cell division. , 1984, Journal of theoretical biology.

[67]  H Roesler,et al.  The history of some fundamental concepts in bone biomechanics. , 1987, Journal of biomechanics.

[68]  F. Yuan Stress is good and bad for tumors , 1997, Nature Biotechnology.

[69]  Donald E Ingber,et al.  Cell tension, matrix mechanics, and cancer development. , 2005, Cancer cell.

[70]  J D Humphrey,et al.  A theoretical model of enlarging intracranial fusiform aneurysms. , 2006, Journal of biomechanical engineering.

[71]  K. Grosh,et al.  A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics , 2003, q-bio/0312001.

[72]  D. Ingber,et al.  Cellular tensegrity : defining new rules of biological design that govern the cytoskeleton , 2022 .

[73]  Rakesh K. Jain,et al.  Pathology: Cancer cells compress intratumour vessels , 2004, Nature.

[74]  A. Ascenzi Biomechanics and Galileo Galilei. , 1993, Journal of biomechanics.

[75]  Davide Carlo Ambrosi,et al.  Stress-Modulated Growth , 2007 .

[76]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[77]  H Sievänen,et al.  Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. , 2000, Bone.

[78]  R. Zernicke,et al.  Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone? , 2000, Bone.

[79]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[80]  Tatsuzo Nagai,et al.  A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. , 2004, Journal of theoretical biology.

[81]  W C Van Buskirk,et al.  Internal bone remodeling induced by a medullary pin. , 1978, Journal of biomechanics.

[82]  G. Wayne Brodland,et al.  Computational modeling of cell sorting, tissue engulfment, and related phenomena: A review , 2004 .

[83]  Paolo A. Netti,et al.  Solid stress inhibits the growth of multicellular tumor spheroids , 1997, Nature Biotechnology.

[85]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[86]  R Skalak,et al.  Interaction of stress and growth in a fibrous tissue. , 1988, Journal of theoretical biology.

[87]  C Zhu,et al.  Cell mechanics: mechanical response, cell adhesion, and molecular deformation. , 2000, Annual review of biomedical engineering.

[88]  E Otten,et al.  Analytical description of growth. , 1982, Journal of theoretical biology.

[89]  G Wayne Brodland,et al.  The mechanics of cell sorting and envelopment. , 2000, Journal of biomechanics.

[90]  S. Hilgenfeldt,et al.  Physical modeling of cell geometric order in an epithelial tissue , 2008, Proceedings of the National Academy of Sciences.

[91]  E. Palsson,et al.  A three-dimensional model of cell movement in multicellular systems , 2001, Future Gener. Comput. Syst..

[92]  R. O. Erickson,et al.  Kinematics of plant growth. , 1979, Journal of theoretical biology.

[93]  Frank Jülicher,et al.  The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial Packing , 2007, Current Biology.

[94]  M. S. Steinberg,et al.  Differential adhesion in morphogenesis: a modern view. , 2007, Current opinion in genetics & development.

[95]  C. Gans,et al.  Biomechanics: Motion, Flow, Stress, and Growth , 1990 .

[96]  A. Grodzinsky,et al.  Cartilage tissue remodeling in response to mechanical forces. , 2000, Annual review of biomedical engineering.

[97]  D. Drasdo,et al.  Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[98]  S C Cowin,et al.  Bone remodeling of diaphysial surfaces under constant load: theoretical predictions. , 1981, Journal of biomechanics.

[99]  Friedrich Pauwels Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe , 1965 .

[100]  A. D. Tomos,et al.  The history of tissue tension. , 1996, Annals of botany.

[101]  Niels Grabe,et al.  A multicellular systems biology model predicts epidermal morphology, kinetics and Ca2+ flow , 2005, Bioinform..

[102]  J. R. Serrano,et al.  Growth Stress in Hardwood Timber , 2004 .

[103]  R. H. Smallwood,et al.  Development and validation of computational models of cellular interaction , 2004, Journal of Molecular Histology.

[104]  Kuo-Kang Liu,et al.  Deformation behaviour of soft particles: a review , 2006 .

[105]  L. Claes,et al.  The law of bone remodelling , 1989 .

[106]  M. Loeffler,et al.  Cell migration and organization in the intestinal crypt using a lattice‐free model , 2001, Cell proliferation.

[107]  K Y Volokh,et al.  Tensegrity architecture explains linear stiffening and predicts softening of living cells. , 2000, Journal of biomechanics.

[108]  R W Cox,et al.  The growth of elastic cartilage. , 1979, Journal of anatomy.

[109]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[110]  K. Kani,et al.  Cell movements in a living mammalian tissue: Long‐term observation of individual cells in wounded corneal endothelia of cats , 1982, Journal of morphology.

[111]  Helen M. Byrne,et al.  Continuum approximations of individual-based models for epithelial monolayers. , 2010, Mathematical medicine and biology : a journal of the IMA.

[112]  J D Humphrey,et al.  Stress, strain, and mechanotransduction in cells. , 2001, Journal of biomechanical engineering.

[113]  E. Kröner,et al.  Nicht-lineare Elastizitätstheorie der Versetzungen und Eigenspannungen , 1959 .

[114]  S. Cowin The significance of bone microstructure in mechanotransduction. , 2007, Journal of biomechanics.

[115]  S. Klisch,et al.  A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. , 2003, Journal of biomechanical engineering.

[116]  H. Othmer,et al.  A model for individual and collective cell movement in Dictyostelium discoideum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Gerard A Ateshian,et al.  On the theory of reactive mixtures for modeling biological growth , 2007, Biomechanics and modeling in mechanobiology.

[118]  D. Beysens,et al.  Cell sorting is analogous to phase ordering in fluids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[119]  G. Oster,et al.  Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. , 1991, Development.

[120]  E Kuhl,et al.  Computational modeling of healing: an application of the material force method , 2004, Biomechanics and modeling in mechanobiology.

[121]  D. Ingber From Molecular Cell Engineering to Biologically Inspired Engineering , 2008 .

[122]  Paul Steinmann,et al.  On spatial and material settings of thermo-hyperelastodynamics for open systems , 2003 .

[123]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation , 2005, SIAM J. Appl. Math..

[124]  K. Volokh,et al.  Stresses in growing soft tissues. , 2006, Acta biomaterialia.

[125]  G. Milton The Theory of Composites , 2002 .

[126]  G Wayne Brodland,et al.  A new cell-based FE model for the mechanics of embryonic epithelia , 2007, Computer methods in biomechanics and biomedical engineering.

[127]  P. Anversa,et al.  Morphometric analysis of hypertension-induced hypertrophy of rat thoracic aorta. , 1977, The American journal of pathology.

[128]  F. Booth,et al.  Control of the size of the human muscle mass. , 2004, Annual review of physiology.

[129]  L. Bodenstein,et al.  A dynamic simulation model of tissue growth and cell patterning. , 1986, Cell differentiation.

[130]  K. Rejniak An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. , 2007, Journal of theoretical biology.

[131]  J. Humphrey,et al.  Elastodynamics and Arterial Wall Stress , 2002, Annals of Biomedical Engineering.

[132]  L. Bodenstein,et al.  Formation of the chick primitive streak as studied in computer simulations. , 2005, Journal of theoretical biology.

[133]  K. Hawboldt,et al.  A cellular automaton model for microcarrier cultures , 1994, Biotechnology and bioengineering.

[134]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[135]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[136]  Gernot Schaller,et al.  Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[137]  A. Klarbring,et al.  On compatible strain with reference to biomechanics of soft tissues , 2005 .

[138]  Alain Goriely,et al.  On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity , 2007, Biomechanics and modeling in mechanobiology.

[139]  J. Huxley Problems of relative growth , 1932 .

[140]  Alexander A Spector,et al.  Emergent patterns of growth controlled by multicellular form and mechanics. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[142]  K. Garikipati The Kinematics of Biological Growth , 2009 .

[143]  H Honda,et al.  How much does the cell boundary contract in a monolayered cell sheet? , 1980, Journal of theoretical biology.

[144]  A. Goodship,et al.  Pathophysiology of Functional Adaptation of Bone in Remodeling and Repair , 2001 .

[145]  G. Brodland,et al.  A three-dimensional finite element model for the mechanics of cell-cell interactions. , 2007, Journal of biomechanical engineering.

[146]  A W Miles,et al.  Bone loss during long term space flight is prevented by the application of a short term impulsive mechanical stimulus , 1997, Acta astronautica.

[147]  E. Kuhl,et al.  A continuum model for remodeling in living structures , 2007 .

[148]  S. Cowin,et al.  Wolff's law of trabecular architecture at remodeling equilibrium. , 1986, Journal of biomechanical engineering.

[149]  S. Cowin Mechanical modeling of the stress adaptation process in bone , 2006, Calcified Tissue International.

[150]  A. Drozdov,et al.  A model for the volumetric growth of a soft tissue , 1997 .

[151]  R. Skalak Modelling the mechanical behavior of red blood cells. , 1973, Biorheology.

[152]  J. Sherratt,et al.  Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. , 2002, Journal of theoretical biology.

[153]  J. Humphrey Continuum biomechanics of soft biological tissues , 2003 .

[154]  Paul Steinmann,et al.  Computational Modelling of Isotropic Multiplicative Growth , 2005 .

[155]  A. Menzel,et al.  Modelling of Mass Changes in Anisotropic Materials , 2005 .

[156]  Timothy P. Harrigan,et al.  Optimality conditions for finite element simulation of adaptive bone remodeling , 1992 .

[157]  G. Forgacs,et al.  Mechanotransduction through the cytoskeleton. , 2002, American journal of physiology. Cell physiology.

[158]  Alain Goriely,et al.  Growth and instability in elastic tissues , 2005 .

[159]  José C. M. Mombach,et al.  Single cell motion in aggregates of embryonic cells. , 1996, Physical review letters.

[160]  Cees W J Oomens,et al.  Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. , 2002, Journal of biomechanical engineering.

[161]  James H Brown,et al.  Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[162]  F.M.F. Simões,et al.  A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues , 2005 .

[163]  R. Archer,et al.  REACTION WOOD: INDUCTION AND MECHANICAL ACTION! , 1977 .

[164]  Donald E. Ingber,et al.  A mechanosensitive transcriptional mechanism that controls angiogenesis , 2009, Nature.

[165]  J D Humphrey,et al.  Perspectives on biological growth and remodeling. , 2011, Journal of the mechanics and physics of solids.

[166]  Z. Jaworski,et al.  Effect of long-term immobilisation on the pattern of bone loss in older dogs. , 1980, The Journal of bone and joint surgery. British volume.

[167]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[168]  D. Drasdo,et al.  Individual cell‐based models of the spatial‐temporal organization of multicellular systems—Achievements and limitations , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[169]  A. Menzel,et al.  A fibre reorientation model for orthotropic multiplicative growth , 2007, Biomechanics and modeling in mechanobiology.

[170]  A. Brú,et al.  The effect of pressure on the growth of tumour cell colonies. , 2006, Journal of theoretical biology.

[171]  Geometrical models of the renewal of the epidermis. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[172]  T. McMahon,et al.  Size and Shape in Biology , 1973, Science.

[173]  Celeste M Nelson,et al.  Geometric control of tissue morphogenesis. , 2009, Biochimica et biophysica acta.

[174]  Robert R. Archer,et al.  Tree Design: Some Biological Solutions to Mechanical Problems , 1979 .

[175]  H M Byrne,et al.  A mathematical model of the stress induced during avascular tumour growth , 2000, Journal of mathematical biology.

[176]  J. McCaskill,et al.  Monte Carlo approach to tissue-cell populations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[177]  M. Krieg,et al.  Tensile forces govern germ-layer organization in zebrafish , 2008, Nature Cell Biology.

[178]  S. Goldstein,et al.  Application of homogenization theory to the study of trabecular bone mechanics. , 1991, Journal of biomechanics.

[179]  Stephen C Cowin,et al.  Tissue growth and remodeling. , 2004, Annual review of biomedical engineering.

[180]  A. Goldberg,et al.  Mechanism of work-induced hypertrophy of skeletal muscle. , 1975, Medicine and science in sports.

[181]  R. T. Hart,et al.  Bone Modeling and Remodeling: Theories and Computation , 2001 .

[182]  H. Honda Geometrical models for cells in tissues. , 1983, International review of cytology.

[183]  R. Nerem Vascular fluid mechanics, the arterial wall, and atherosclerosis. , 1992, Journal of biomechanical engineering.

[184]  Vlado A. Lubarda,et al.  On the mechanics of solids with a growing mass , 2002 .

[185]  A. Sadegh,et al.  An evolutionary Wolff's law for trabecular architecture. , 1992, Journal of biomechanical engineering.

[186]  E. Olson,et al.  Cardiac hypertrophy: the good, the bad, and the ugly. , 2003, Annual review of physiology.

[187]  D. Ingber Tensegrity I. Cell structure and hierarchical systems biology , 2003, Journal of Cell Science.

[188]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues II: Solutions to the Biphasic Equations for a Multicell Spheroid , 2005, SIAM J. Appl. Math..

[189]  M. E. Desmond,et al.  Embryonic brain enlargement requires cerebrospinal fluid pressure. , 1977, Developmental biology.

[190]  M. Crosby,et al.  Cell Cycle: Principles of Control , 2007, The Yale Journal of Biology and Medicine.

[191]  Y. Fung,et al.  Strain distribution in small blood vessels with zero-stress state taken into consideration. , 1992, The American journal of physiology.

[192]  D. J. Wolff Ueber die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum , 1870, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[193]  M. Holcombe,et al.  The epitheliome: agent-based modelling of the social behaviour of cells. , 2004, Bio Systems.

[194]  D. Caillerie,et al.  Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium , 2003 .

[195]  Jean-François Ganghoffer,et al.  Mechanical modeling of growth considering domain variation. Part I: constitutive framework , 2005 .

[196]  D. Ambrosi,et al.  On the mechanics of a growing tumor , 2002 .

[197]  Donald E. Ingber,et al.  The structural and mechanical complexity of cell-growth control , 1999, Nature Cell Biology.

[198]  G. Wayne Brodland,et al.  A cell-based constitutive model for embryonic epithelia and other planar aggregates of biological cells , 2006 .

[199]  Wolfgang Alt,et al.  Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics , 2009, Bulletin of mathematical biology.

[200]  John Ockendon,et al.  Applied Solid Mechanics: Prologue , 2008 .

[201]  D. Ingber Tensegrity II. How structural networks influence cellular information processing networks , 2003, Journal of Cell Science.

[202]  H. Vandenburgh,et al.  Mechanically induced alterations in cultured skeletal muscle growth. , 1991, Journal of biomechanics.

[203]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[204]  J. Drazen,et al.  Bronchial epithelial compression regulates epidermal growth factor receptor family ligand expression in an autocrine manner. , 2005, American journal of respiratory cell and molecular biology.

[205]  D'arcy W. Thompson On growth and form i , 1943 .

[206]  Jay D. Humphrey,et al.  Review Paper: Continuum biomechanics of soft biological tissues , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[207]  S. Cowin,et al.  Bone remodeling I: theory of adaptive elasticity , 1976 .

[208]  A. Menzel Anisotropic Remodelling of Biological Tissues , 2006 .

[209]  D. McElwain,et al.  A linear-elastic model of anisotropic tumour growth , 2004, European Journal of Applied Mathematics.

[210]  R. Lorentzon,et al.  Type of Physical Activity, Muscle Strength, and Pubertal Stage as Determinants of Bone Mineral Density and Bone Area in Adolescent Boys , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[211]  D. Drasdo,et al.  A single-cell-based model of tumor growth in vitro: monolayers and spheroids , 2005, Physical biology.

[212]  Jacques Prost,et al.  Homeostatic competition drives tumor growth and metastasis nucleation , 2009, HFSP journal.

[213]  S. Hoehme,et al.  On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models? , 2007 .

[214]  J. Sachs,et al.  Text-Book of Botany, Morphological and Physical , 2010 .

[215]  A. Hoger,et al.  Constitutive Functions of Elastic Materials in Finite Growth and Deformation , 2000 .

[216]  W Grossman,et al.  Cardiac hypertrophy: useful adaptation or pathologic process? , 1980, The American journal of medicine.

[217]  J S YOUNG,et al.  The invasive growth of malignant tumours: an experimental interpretation based on elastic-jelly models. , 1959, The Journal of pathology and bacteriology.

[218]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .

[219]  Marcelo Epstein,et al.  Thermomechanics of volumetric growth in uniform bodies , 2000 .

[220]  A. Gjelsvik,et al.  Bone remodeling and piezoelectricity. I. , 1973, Journal of biomechanics.

[221]  D. Drasdo,et al.  Individual-based approaches to birth and death in avascu1ar tumors , 2003 .

[222]  B. Shraiman,et al.  Mechanical feedback as a possible regulator of tissue growth. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[223]  Adam Morecki Biomechanics of Motion , 1980 .

[224]  T. Newman,et al.  Modeling multicellular systems using subcellular elements. , 2005, Mathematical biosciences and engineering : MBE.

[225]  Alain Goriely,et al.  Differential growth and instability in elastic shells. , 2005, Physical review letters.

[226]  K Garikipati,et al.  In silico estimates of the free energy rates in growing tumor spheroids , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[227]  R K Jain,et al.  Determinants of tumor blood flow: a review. , 1988, Cancer research.

[228]  A. Stein The deformation of a rod of growing biological material under longitudinal compression , 1995 .

[229]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..

[230]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[231]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[232]  D L S McElwain,et al.  A history of the study of solid tumour growth: The contribution of mathematical modelling , 2004, Bulletin of mathematical biology.

[233]  Andreas Deutsch,et al.  Cellular Automaton Models of Tumor Development: a Critical Review , 2002, Adv. Complex Syst..

[234]  Jim Haseloff,et al.  A Computational Model of Cellular Morphogenesis in Plants , 2005, ECAL.

[235]  K. Dormer,et al.  Fundamental tissue geometry for biologists , 1980 .

[236]  Stephen C. Cowin,et al.  Bone remodeling II: small strain adaptive elasticity , 1976 .

[237]  Paul Steinmann,et al.  Material forces in open system mechanics , 2004 .

[238]  H. Narayanan,et al.  Biological remodelling: Stationary energy, configurational change, internal variables and dissipation , 2005, q-bio/0506023.

[239]  J Rashbass,et al.  A computer graphic simulation of squamous epithelium. , 1995, Journal of theoretical biology.

[240]  David A Weitz,et al.  The cell as a material. , 2007, Current opinion in cell biology.

[241]  J. Coulombre,et al.  The role of intraocular pressure in the development of the chick eye. IV. Corneal curvature. , 1958, A.M.A. archives of ophthalmology.

[242]  D. Ingber,et al.  A Computational Tensegrity Model Predicts Dynamic Rheological Behaviors in Living Cells , 2004, Annals of Biomedical Engineering.

[243]  On Volterra Dislocations of Finitely Deforming Continua , 2004 .

[244]  H. Deshmukh,et al.  When wheeze leads to squeeze: growth under pressure. , 2005, American journal of respiratory cell and molecular biology.

[245]  Marc Brulport,et al.  Mathematical modelling of liver regeneration after intoxication with CCl(4). , 2007, Chemico-biological interactions.

[246]  D. Ambrosi,et al.  Growth and dissipation in biological tissues , 2007 .

[247]  Marek Bodnar,et al.  Derivation of macroscopic equations for individual cell‐based models: a formal approach , 2005 .

[248]  P. Lintilhac,et al.  An insight into cell elasticity and load-bearing ability. Measurement and theory. , 2001, Plant physiology.

[249]  J. Chalmers,et al.  THE GROWTH OF TRANSPLANTED FOETAL BONES IN DIFFERENT IMMUNOLOGICAL ENVIRONMENTS , 1962 .

[250]  S. Pagano,et al.  A simple model for phase transitions: from the discrete to the continuum problem , 2003 .

[251]  R K Jain,et al.  Compatibility and the genesis of residual stress by volumetric growth , 1996, Journal of mathematical biology.

[252]  V. Lubarda Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics , 2004 .

[253]  Stephen M. Klisch,et al.  A Theory of Volumetric Growth for Compressible Elastic Biological Materials , 2001 .

[254]  Y. C. Fung,et al.  What are the residual stresses doing in our blood vessels? , 2006, Annals of Biomedical Engineering.

[255]  P. Hogeweg,et al.  Modelling Morphogenesis: From Single Cells to Crawling Slugs. , 1997, Journal of theoretical biology.

[256]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[257]  Donald E. Ingber,et al.  Tensegrity-based mechanosensing from macro to micro. , 2008, Progress in biophysics and molecular biology.

[258]  L V Beloussov,et al.  Mechanical stresses and morphological patterns in amphibian embryos. , 1975, Journal of embryology and experimental morphology.

[259]  L A Taber,et al.  Theoretical study of stress-modulated growth in the aorta. , 1996, Journal of theoretical biology.

[260]  Jay D. Humphrey,et al.  A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES , 2002 .

[261]  K. Grosh,et al.  Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network , 2004, q-bio/0411037.

[262]  P. D. F. Murray,et al.  Bones: A Study of the Development and Structure of the Vertebrate Skeleton , 1985 .

[263]  Stephen C. Cowin,et al.  The False Premise in Wolff's Law , 2001 .

[264]  D L S McElwain,et al.  New insights into vascular collapse and growth dynamics in solid tumors. , 2004, Journal of theoretical biology.

[265]  H. Honda,et al.  Transformation of a polygonal cellular pattern during sexual maturation of the avian oviduct epithelium: computer simulation. , 1986, Journal of embryology and experimental morphology.

[266]  Cynthia A. Reinhart-King,et al.  Tensional homeostasis and the malignant phenotype. , 2005, Cancer cell.

[267]  Keiichi Takamizawa,et al.  Kinematics for bodies undergoing residual stress and its applications to the left ventricle , 1990 .

[268]  L. Taber A model for aortic growth based on fluid shear and fiber stresses. , 1998, Journal of biomechanical engineering.

[269]  Antonio DiCarlo,et al.  Growth and balance , 2002 .

[270]  Victor H. Barocas,et al.  Volume-averaging theory for the study of the mechanics of collagen networks , 2007 .

[271]  Javier Rodríguez,et al.  Finite Element Models for Mechanical Simulation of Coronary Arteries , 2003, FIMH.