Generalized Dynamic Programming for Stochastic Combinatorial Optimization

In stochastic versions of combinatorial optimization problems, the objective is to maximize or minimize a function of random variables. For many problems of this type, conventionally applied dynamic programming DP may fail to generate an optimal solution due to the potential violation of the monotonicity assumption of DP. We develop a generalization of DP that guarantees optimality even in the absence of monotonicity. We illustrate the methodology on a version of the stochastic traveling salesman problem for which a previously proposed DP algorithm E. Kao is potentially suboptimal due to the violation of monotonicity M. Sniedovich. Using Generalized DP, we are able to modify the algorithm to guarantee optimality.

[1]  M. J. Sobel Ordinal Dynamic Programming , 1975 .

[2]  Moshe Sniedovich,et al.  Dynamic programming and principles of optimality , 1978 .

[3]  H. Moskowitz,et al.  Generalized dynamic programming for multicriteria optimization , 1990 .

[4]  H. J. Greenberg Dynamic Programming with Linear Uncertainty , 1968, Oper. Res..

[5]  L. G. Mitten Composition Principles for Synthesis of Optimal Multistage Processes , 1964 .

[6]  M. Held,et al.  Finite-State Processes and Dynamic Programming , 1967 .

[7]  Mordechai I. Henig,et al.  The Principle of Optimality in Dynamic Programming with Returns in Partially Ordered Sets , 1985, Math. Oper. Res..

[8]  Thomas L. Morin,et al.  Branch-and-Bound Strategies for Dynamic Programming , 2015, Oper. Res..

[9]  T. A. Brown,et al.  Dynamic Programming in Multiplicative Lattices , 1965 .

[10]  L. G. Mitten Preference Order Dynamic Programming , 1974 .

[11]  Nicolas Bourbaki Elements of Mathematics: Theory of Sets , 1968 .

[12]  Thomas L. Morin,et al.  A hybrid approach to discrete mathematical programming , 2015, Math. Program..

[13]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[14]  Robert L. Carraway,et al.  A dynamic programming approach to stochastic assembly line balancing , 1989 .

[15]  Edward P. C. Kao,et al.  A Preference Order Dynamic Program for a Stochastic Traveling Salesman Problem , 1978, Oper. Res..

[16]  Moshe Sniedovich,et al.  Technical Note - Analysis of a Preference Order Traveling Salesman Problem , 1981, Oper. Res..

[17]  R. Bellman Dynamic programming. , 1957, Science.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  P. Halmos Naive Set Theory , 1961 .

[20]  V. Bawa OPTIMAL, RULES FOR ORDERING UNCERTAIN PROSPECTS+ , 1975 .

[21]  Nicos Christofides,et al.  Technical Note - Bounds for the Travelling-Salesman Problem , 1972, Oper. Res..