A minimization method for the sum of a convex function and a continuously differentiable function

This paper presents a method for finding the minimum for a class of nonconvex and nondifferentiable functions consisting of the sum of a convex function and a continuously differentiable function. The algorithm is a descent method which generates successive search directions by solving successive convex subproblems. The algorithm is shown to converge to a critical point.

[1]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[2]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[3]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[4]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[5]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[6]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[7]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[8]  N. Z. Shor Utilization of the operation of space dilatation in the minimization of convex functions , 1972 .

[9]  D. Bertsekas,et al.  A DESCENT NUMERICAL METHOD FOR OPTIMIZATION PROBLEMS WITH NONDIFFERENTIABLE COST FUNCTIONALS , 1973 .

[10]  S. Howe New Conditions for Exactness of a Simple Penalty Function , 1973 .

[11]  A. Conn Constrained Optimization Using a Nondifferentiable Penalty Function , 1973 .

[12]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[13]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[14]  D. Louvish,et al.  Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations , 1974 .

[15]  P. Wolfe Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .

[16]  C. Lemaréchal An extension of davidon methods to non differentiable problems , 1975 .

[17]  P. Wolfe,et al.  A METHOD OF CONJUGATE SUBGRADIENTS FOR , 1975 .

[18]  F. Clarke Generalized gradients and applications , 1975 .

[19]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..

[20]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[21]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[22]  Robert Mifflin,et al.  An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..

[23]  A. A. Goldstein,et al.  Optimization of lipschitz continuous functions , 1977, Math. Program..