Energy Harvesting Research: The Road from Single Source to Multisource

Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long‐term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single‐source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community.

[1]  Yang Bai,et al.  Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input , 2018, Mechanical Systems and Signal Processing.

[2]  Rui Zhang,et al.  Effect of Li 2 CO 3 addition in BiFeO 3 -BaTiO 3 ceramics on the sintering temperature, electrical properties and phase transition , 2018 .

[3]  Tulja Bhavani Korukonda,et al.  Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization , 2018 .

[4]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[5]  Adolf Acquaye,et al.  Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies , 2017 .

[6]  Ming Wu,et al.  Ni-doped SrBi2Nb2O9 – Perovskite oxides with reduced band gap and stable ferroelectricity for photovoltaic applications , 2017 .

[7]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[8]  Ebrahim Esmailzadeh,et al.  Modeling and performance analysis of duck‐shaped triboelectric and electromagnetic generators for water wave energy harvesting , 2017 .

[9]  X. Ye,et al.  Freestanding-electret rotary generator at an average conversion efficiency of 56%: Theoretical and experimental studies , 2017 .

[10]  Sang‐Jae Kim,et al.  A flexible, planar energy harvesting device for scavenging road side waste mechanical energy via the synergistic piezoelectric response of K0.5Na0.5NbO3-BaTiO3/PVDF composite films. , 2017, Nanoscale.

[11]  T. Kitamura,et al.  Strain-induced ferroelectricity and lattice coupling in BaSnO3 and SrSnO3. , 2017, Physical chemistry chemical physics : PCCP.

[12]  H. Jung,et al.  Origin of Hysteresis in CH3NH3PbI3 Perovskite Thin Films , 2017 .

[13]  Fahad A. Al-Sulaiman,et al.  Recent progress and remaining challenges in organometallic halides based perovskite solar cells , 2017 .

[14]  Zhiyu Wen,et al.  A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester , 2017 .

[15]  Y. Nishijima,et al.  Design concept of a hybrid photo-voltaic/thermal conversion cell for mid-infrared light energy harvester , 2017 .

[16]  Chao Hu,et al.  Design optimization under uncertainty and speed variability for a piezoelectric energy harvester powering a tire pressure monitoring sensor , 2017 .

[17]  Christopher R. Bowen,et al.  Pyroelectric energy harvesting for water splitting , 2017 .

[18]  Q. Tang,et al.  Interfacial engineering of hybridized solar cells for simultaneously harvesting solar and rain energies , 2017 .

[19]  Zhangxian Deng,et al.  Review of magnetostrictive vibration energy harvesters , 2017 .

[20]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[21]  P. Lund,et al.  Device stability of perovskite solar cells – A review , 2017 .

[22]  Feng Yan,et al.  Emerging Semitransparent Solar Cells: Materials and Device Design , 2017, Advanced materials.

[23]  Qingqing Shen,et al.  Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy , 2017 .

[24]  Mohammad Hossein Anisi,et al.  A Review on energy management schemes in energy harvesting wireless sensor networks , 2017 .

[25]  J. Chu,et al.  Band gap engineering and magnetic switching in a novel perovskite (1−x)KNbO3−xBaNb1/2Fe1/2O3 , 2017 .

[26]  K. Mandal,et al.  Evidence of Enhanced Oxygen Vacancy Defects Inducing Ferromagnetism in Multiferroic CaMn7O12 Manganite with Sintering Time , 2017 .

[27]  Chen Gangjin,et al.  A Flexible Electret Membrane with Persistent Electrostatic Effect and Resistance to Harsh Environment for Energy Harvesting , 2017, Scientific Reports.

[28]  M. Kim,et al.  Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity , 2017 .

[29]  Vipan Kakkar,et al.  An Electret-Based Angular Electrostatic Energy Harvester for Battery-Less Cardiac and Neural Implants , 2017, IEEE Access.

[30]  C. Tugui,et al.  Stretchable Energy Harvesting Devices: Attempts To Produce High-Performance Electrodes , 2017 .

[31]  Xing’ao Li,et al.  Effect of Ho, Mn co-doping on the structural, optical and ferroelectric properties of BiFeO3 nanoparticles , 2017, Journal of Materials Science: Materials in Electronics.

[32]  Ran Cao,et al.  Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy. , 2017, ACS nano.

[33]  Yu Song,et al.  Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring , 2017 .

[34]  Zhou Fang,et al.  A rotational piezoelectric energy harvester for efficient wind energy harvesting , 2017 .

[35]  Meiling Zhu,et al.  A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments , 2017 .

[36]  Fehmi Najar,et al.  Parametric analysis of multilayered unimorph piezoelectric vibration energy harvesters , 2017 .

[37]  J. Heremans,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[38]  D. Mitzi,et al.  Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. , 2017, Inorganic chemistry.

[39]  Sourav Banerjee,et al.  A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity , 2017 .

[40]  Chunhui Huang,et al.  Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12% , 2017, Advanced science.

[41]  Erol Kurt,et al.  Design and implementation of a new contactless triple piezoelectrics wind energy harvester , 2017 .

[42]  Christopher R. Bowen,et al.  Effect of Zr/Ti ratio on microstructure and electrical properties of pyroelectric ceramics for energy harvesting applications , 2017 .

[43]  Samir Mekid,et al.  Energy Harvesting from Ambient Radio Frequency: Is it Worth it? , 2017 .

[44]  M. Schmid,et al.  Nanogenerators for Human Body Energy Harvesting. , 2017, Trends in biotechnology.

[45]  L. Luo,et al.  Electrocaloric effect and pyroelectric energy harvesting of (0.94 − x)Na0.5Bi0.5TiO3-0.06BaTiO3-xSrTiO3 ceramics , 2017 .

[46]  C. Kang,et al.  Flexible piezoelectric polymer-based energy harvesting system for roadway applications , 2017 .

[47]  H. Hida,et al.  Airflow energy harvester of piezoelectric thin-film bimorph using self-excited vibration , 2017 .

[48]  Qingjie Zhang,et al.  Eco-friendly high-performance silicide thermoelectric materials , 2017 .

[49]  Tae Hyun Sung,et al.  Feasibility study of impact-based piezoelectric road energy harvester for wireless sensor networks in smart highways , 2017 .

[50]  Xingjian Jing,et al.  A comprehensive review on vibration energy harvesting: Modelling and realization , 2017 .

[51]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[52]  Zhong Lin Wang,et al.  Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. , 2017, Annual review of biomedical engineering.

[53]  Zhongqiang Zhang,et al.  Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite , 2017 .

[54]  Yang Bai,et al.  A Game Changer: A Multifunctional Perovskite Exhibiting Giant Ferroelectricity and Narrow Bandgap with Potential Application in a Truly Monolithic Multienergy Harvester or Sensor , 2017, Advanced materials.

[55]  Hanim Salleh,et al.  New simulation approach for tuneable trapezoidal and rectangular piezoelectric bimorph energy harvesters , 2017 .

[56]  M. Karppinen,et al.  Flexible Thermoelectric ZnO–Organic Superlattices on Cotton Textile Substrates by ALD/MLD , 2017 .

[57]  Bill J. Van Heyst,et al.  A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges , 2017 .

[58]  Fangping Zhuo,et al.  Phase transformations, anisotropic pyroelectric energy harvesting and electrocaloric properties of (Pb,La)(Zr,Sn,Ti)O3 single crystals. , 2017, Physical chemistry chemical physics : PCCP.

[59]  Walid A. Daoud,et al.  Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator , 2017 .

[60]  Santiago Orrego,et al.  Harvesting ambient wind energy with an inverted piezoelectric flag , 2017 .

[61]  Daniel Champier,et al.  Thermoelectric generators: A review of applications , 2017 .

[62]  Daoben Zhu,et al.  Recent advances in organic polymer thermoelectric composites , 2017 .

[63]  Jiantao Zhang,et al.  Enhanced piezoelectric wind energy harvesting based on a buckled beam , 2017 .

[64]  Adelino Ferreira,et al.  Road pavement energy harvesting: An evaluation methodology for new and existing vehicle-derived mechanical energy collectors , 2017 .

[65]  Gursel Alici,et al.  A review on performance enhancement techniques for ambient vibration energy harvesters , 2017 .

[66]  Lukai Guo,et al.  Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements , 2017 .

[67]  Nannan Zhang,et al.  Progress in triboelectric nanogenerators as self-powered smart sensors , 2017 .

[68]  S. H. Zaferani Using silane products on fabrication of polymer-based nanocomposite for thin film thermoelectric devices , 2017 .

[69]  Mehmet Rasit Yuce,et al.  A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique , 2017 .

[70]  M. Hoffmann,et al.  Ferroelectric domains in methylammonium lead iodide perovskite thin-films , 2017 .

[71]  Arshad Hassan,et al.  A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting , 2017, Nanotechnology.

[72]  Jinsong Huang,et al.  CH3NH3PbI3 perovskites: Ferroelasticity revealed , 2017, Science Advances.

[73]  Kyu Hyoung Lee,et al.  Design and preparation of high-performance bulk thermoelectric materials with defect structures , 2017 .

[74]  Zhou Li,et al.  Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems , 2017, Advanced science.

[75]  Jiangyu Li,et al.  Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films. , 2017, Nanoscale.

[76]  Bai-Xiang Xu,et al.  Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters , 2017 .

[77]  Yan Zhang,et al.  Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file. , 2017, Journal of materials chemistry. A.

[78]  C. Bowen,et al.  Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. , 2017, ACS applied materials & interfaces.

[79]  K. Miyazaki,et al.  Thermoelectric and Structural Characterization of Al-Doped ZnO/Y₂O₃ Multilayers. , 2017, Journal of nanoscience and nanotechnology.

[80]  Oliver G. Schmidt,et al.  A Flexible PMN‐PT Ribbon‐Based Piezoelectric‐Pyroelectric Hybrid Generator for Human‐Activity Energy Harvesting and Monitoring , 2017 .

[81]  Chen Gangjin,et al.  A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power , 2017 .

[82]  M. Alexe,et al.  Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3 , 2017, Scientific Reports.

[83]  D. Oron,et al.  Tetragonal CH3NH3PbI3 is ferroelectric , 2017, Proceedings of the National Academy of Sciences.

[84]  Alberto Carpinteri,et al.  Energy harvesting from wind by a piezoelectric harvester , 2017 .

[85]  Chao Wang,et al.  A thermoelectric generator for scavenging gas-heat: From module optimization to prototype test , 2017 .

[86]  Venkateswaran Vivekananthan,et al.  A sustainable freestanding biomechanical energy harvesting smart backpack as a portable-wearable power source , 2017 .

[87]  Yang Bai,et al.  Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide , 2017 .

[88]  Hong Guo,et al.  Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3 , 2017, Scientific Reports.

[89]  Xiaohao Wang,et al.  Review of MEMS Electromagnetic Vibration Energy Harvester , 2017, Journal of Microelectromechanical Systems.

[90]  Qiongfeng Shi,et al.  Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism , 2017, Scientific Reports.

[91]  Hee Seok Kim,et al.  The bridge between the materials and devices of thermoelectric power generators , 2017 .

[92]  Stephen R Hallett,et al.  Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: Part I – Integration and experiment , 2017 .

[93]  S. LeBlanc,et al.  Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges , 2017 .

[94]  G. Lanzani,et al.  Thermoelectric characterization of flexible micro-thermoelectric generators. , 2017, The Review of scientific instruments.

[95]  Wonjoon Choi,et al.  Thermoelectric–pyroelectric hybrid energy generation from thermopower waves in core–shell structured carbon nanotube–PZT nanocomposites , 2017, Nanotechnology.

[96]  Xudong Wang,et al.  Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film. , 2016, ACS applied materials & interfaces.

[97]  Wei Zhu,et al.  Synergistic photovoltaic–thermoelectric effect in a nanostructured CdTe/Bi2Te3 heterojunction for hybrid energy harvesting , 2016 .

[98]  John A. Rogers,et al.  Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation , 2016 .

[99]  Xudong Wang,et al.  Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development , 2016 .

[100]  Saeed Ziaei-Rad,et al.  Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles , 2016 .

[101]  J. Jia,et al.  Bandgap tuning of [KNbO3]1−x[BaCo1/2Nb1/2O3−δ]x ferroelectrics , 2016 .

[102]  Yongan Huang,et al.  Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability , 2016, Advanced materials.

[103]  Long Lin,et al.  Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. , 2016, ACS nano.

[104]  H. Moriwake,et al.  Improper ferroelectricity in stuffed aluminate sodalites for pyroelectric energy harvesting , 2016, 1611.05115.

[105]  Rong Chen,et al.  A rail-borne piezoelectric transducer for energy harvesting of railway vibration , 2016 .

[106]  Christopher R. Bowen,et al.  Wind-driven pyroelectric energy harvesting device , 2016 .

[107]  Min Ki Kim,et al.  Triboelectric–thermoelectric hybrid nanogenerator for harvesting frictional energy , 2016 .

[108]  Jie Zhu,et al.  A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement , 2016 .

[109]  Yongtian Wang,et al.  In Situ Fabrication of Halide Perovskite Nanocrystal‐Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights , 2016, Advanced materials.

[110]  Yeong Hwan Ko,et al.  Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously. , 2016, ACS applied materials & interfaces.

[111]  Hong Hee Yoo,et al.  Piezoelectric energy harvesting system with magnetic pendulum movement for self-powered safety sensor of trains , 2016 .

[112]  Tao Wang,et al.  Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for “Stiff” and “Flexible” Materials , 2016, Scientific Reports.

[113]  T. Yang,et al.  Optimization of energy harvesting based on the uniform deformation of piezoelectric ceramic , 2016 .

[114]  S Dulio,et al.  Energy harvesting from human motion: materials and techniques. , 2016, Chemical Society reviews.

[115]  J. L. Curiel-Sosa,et al.  Piezoelectric energy harvester composite under dynamic bending with implementation to aircraft wingbox structure , 2016 .

[116]  Daochun Li,et al.  Energy harvesting by means of flow-induced vibrations on aerospace vehicles , 2016 .

[117]  Kamal K. Kar,et al.  Recent advances in thermoelectric materials , 2016 .

[118]  R. Saidur,et al.  A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery , 2016 .

[119]  Farid Ullah Khan,et al.  State-of-the-art in vibration-based electrostatic energy harvesting , 2016 .

[120]  Wen-Jong Wu,et al.  Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting , 2016 .

[121]  C. Bowen,et al.  Characterization and Modeling of Meshed Electrodes on Free Standing Polyvilylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Harvesting , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[122]  İlker Temizer,et al.  The performance and analysis of the thermoelectric generator system used in diesel engines , 2016 .

[123]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[124]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[125]  Farid Ullah Khan,et al.  Review of non-resonant vibration based energy harvesters for wireless sensor nodes , 2016 .

[126]  Melin Sahin,et al.  Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate , 2016 .

[127]  L. Petit,et al.  Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers , 2016 .

[128]  K. Biswas,et al.  High performance thermoelectric materials and devices based on GeTe , 2016 .

[129]  Seong Kwang Hong,et al.  Road energy harvester designed as a macro-power source using the piezoelectric effect , 2016 .

[130]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[131]  Huikai Zhong,et al.  Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow , 2016 .

[132]  He Zhang,et al.  Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements , 2016 .

[133]  Yuelong Yu,et al.  Energy harvesting with two parallel pinned piezoelectric membranes in fluid flow , 2016 .

[134]  Giuseppe Quaranta,et al.  Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge , 2016 .

[135]  Haocheng Xiong,et al.  Piezoelectric energy harvester for public roadway: On-site installation and evaluation , 2016 .

[136]  J. Tao,et al.  Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects , 2016 .

[137]  Christopher R. Bowen,et al.  A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting , 2016 .

[138]  Majid Sarrafzadeh,et al.  Pedometers Without Batteries: An Energy Harvesting Shoe , 2016, IEEE Sensors Journal.

[139]  Canan Dagdeviren,et al.  Shear Piezoelectricity in Poly(vinylidenefluoride‐co‐trifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energy‐Harvesting Nanostructures , 2016, Advanced materials.

[140]  Zdenek Hadas,et al.  A study of kinetic energy harvesting for biomedical application in the head area , 2016 .

[141]  Mupeng Zheng,et al.  High Energy Density Lead-Free Piezoelectric Ceramics for Energy Harvesting and Derived from a Sol–Gel Route , 2016 .

[142]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[143]  M. Guennou,et al.  Photovoltaics with Ferroelectrics: Current Status and Beyond , 2016, Advanced materials.

[144]  Antonios Tsourdos,et al.  Vibration energy harvesters for wireless sensor networks for aircraft health monitoring , 2016, 2016 IEEE Metrology for Aerospace (MetroAeroSpace).

[145]  Massimo De Vittorio,et al.  AlN-based flexible piezoelectric skin for energy harvesting from human motion , 2016 .

[146]  Zhong Lin Wang,et al.  Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. , 2016, ACS nano.

[147]  Jing Yan,et al.  High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes. , 2016, ACS applied materials & interfaces.

[148]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[149]  C. Uher,et al.  Recent advances in high-performance bulk thermoelectric materials , 2016 .

[150]  R. Vaish,et al.  An experimental study on thermal energy harvesting using Ca0.15(Sr0.5Ba0.5)0.85Nb2O5 pyroelectric ceramics , 2016 .

[151]  A. Akbarzadeh,et al.  A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes , 2016 .

[152]  Tae Yun Kim,et al.  All-in-one energy harvesting and storage devices , 2016 .

[153]  T. Bendikov,et al.  CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance , 2016 .

[154]  Jari Juuti,et al.  Energy Harvesting with a Bimorph Type Piezoelectric Diaphragm Multilayer Structure and Mechanically Induced Pre‐stress , 2016 .

[155]  Jinkyu Yang,et al.  Flexible ceramic-elastomer composite piezoelectric energy harvester fabricated by additive manufacturing , 2016 .

[156]  Mohsen Hamedi,et al.  An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester , 2016 .

[157]  Jin-Woo Han,et al.  Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package , 2016 .

[158]  K. Kanai,et al.  Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies. , 2016, ACS applied materials & interfaces.

[159]  Yong Liu,et al.  Microstructure tailoring in nanostructured thermoelectric materials , 2016 .

[160]  Dinesh K. Aswal,et al.  Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects , 2016 .

[161]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[162]  D. Niu,et al.  An infrared-driven flexible pyroelectric generator for non-contact energy harvester. , 2016, Nanoscale.

[163]  Christopher R. Bowen,et al.  Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures , 2016 .

[164]  Patrick Hu,et al.  Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester , 2016 .

[165]  Yirong Lin,et al.  Feasibility study of thermal energy harvesting using lead free pyroelectrics , 2016 .

[166]  I. Oh,et al.  Piezoelectric thin films: an integrated review of transducers and energy harvesting , 2016 .

[167]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[168]  Jin-Seo Noh,et al.  Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters , 2016, Polymers.

[169]  Zhifeng Ren,et al.  Recent progress in half-Heusler thermoelectric materials , 2016 .

[170]  Tiejun Zhu,et al.  New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials , 2016, Advanced science.

[171]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[172]  A. Moure,et al.  Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting , 2016 .

[173]  J. Reboud,et al.  A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications , 2016 .

[174]  Yunlong Zi,et al.  A Water‐Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments , 2016 .

[175]  P. Bandaru,et al.  Nanostructured Thermoelectrics , 2016 .

[176]  Guangzu Zhang,et al.  Characteristics of the PMnN-PMS-PZT pyroelectric ceramics for energy harvesting devices , 2016 .

[177]  Min Gyu Kang,et al.  Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies , 2016 .

[178]  Y. Xin,et al.  Shoes-equipped piezoelectric transducer for energy harvesting: A brief review , 2016 .

[179]  Izhar,et al.  Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion. , 2016, The Review of scientific instruments.

[180]  Hwan R. Jo,et al.  Phase transformation based pyroelectric waste heat energy harvesting with improved practicality , 2016 .

[181]  R. Vaish,et al.  A numerical investigation on exergy analyses of a pyroelectric tryglycine sulfate (TGS)-based solar energy harvesting system , 2016 .

[182]  Jae-Eung Oh,et al.  Optimization and performance improvement of an electromagnetic-type energy harvester with consideration of human walking vibration , 2016, Journal of the Korean Physical Society.

[183]  J. Berakdar,et al.  Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures , 2016, 1602.00433.

[184]  Majid Sarrafzadeh,et al.  Detection of Gestures Associated With Medication Adherence Using Smartwatch-Based Inertial Sensors , 2016, IEEE Sensors Journal.

[185]  Qi Zhang,et al.  Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges   , 2016 .

[186]  D. Guyomar,et al.  Mechanical energy harvesting via a plasticizer-modified electrostrictive polymer , 2016 .

[187]  F. Zheng,et al.  Substantial bulk photovoltaic effect enhancement via nanolayering , 2016, Nature Communications.

[188]  N. Muensit,et al.  Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline , 2016 .

[189]  A. Maignan,et al.  Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[190]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[191]  Sung-Ho Shin,et al.  Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators , 2016 .

[192]  Xiaobiao Shan,et al.  A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms , 2016 .

[193]  Hulin Zhang,et al.  Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. , 2015, ACS applied materials & interfaces.

[194]  F. Zheng,et al.  Photoferroelectric and Photopiezoelectric Properties of Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[195]  R. Chetty,et al.  Tetrahedrites as thermoelectric materials: an overview , 2015 .

[196]  Dhia Salim,et al.  A review of vibration-based MEMS hybrid energy harvesters , 2015 .

[197]  Ping Li,et al.  An arc-shaped piezoelectric generator for multi-directional wind energy harvesting , 2015 .

[198]  R. Vaish,et al.  Energy and Exergy Analyses of a Pyroelectric‐Based Solar Energy Harvesting System , 2015 .

[199]  B. Ilahi,et al.  Pyroelectric Energy Harvesting Using (Ba0.85Ca0.15) (Zr0.1Ti0.89Fe0.01)O3 Ceramics , 2015 .

[200]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[201]  Abdessattar Abdelkefi,et al.  Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations , 2015 .

[202]  Yang Bai,et al.  Nonlinear piezoelectric devices for broadband air-flow energy harvesting , 2015 .

[203]  T. Button,et al.  (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics—The critical role of processing on properties , 2015 .

[204]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[205]  Fan Liao,et al.  Recent Advancements in Nanogenerators for Energy Harvesting. , 2015, Small.

[206]  Mohsen Hamedi,et al.  Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs , 2015 .

[207]  Wang Chen,et al.  Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid , 2015 .

[208]  M. Karppinen,et al.  Inorganic-organic superlattice thin films for thermoelectrics , 2015 .

[209]  B. S. Sreeja,et al.  Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester , 2015 .

[210]  Renwen Chen,et al.  Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions , 2015 .

[211]  Stewart Sherrit,et al.  Piezoelectric Energy Harvesting in Internal Fluid Flow , 2015, Sensors.

[212]  Antonio Concilio,et al.  An original device for train bogie energy harvesting: a real application scenario , 2015 .

[213]  Y. Chiu,et al.  PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes , 2015 .

[214]  A. Chauhan,et al.  Pyroelectric materials for solar energy harvesting: a comparative study , 2015 .

[215]  G. Nolas,et al.  High temperature thermoelectric properties of Ba_xYb_yFe_3CoSb_12 p-type skutterudites , 2015 .

[216]  R. Rostek,et al.  A review of electroplating for V–VI thermoelectric films: from synthesis to device integration , 2015 .

[217]  J. G. Sevillano,et al.  Microcompression tests of single-crystalline and ultrafine grain Bi_2Te_3 thermoelectric material , 2015 .

[218]  R. Funahashi,et al.  Thermoelectric materials for middle and high temperature ranges , 2015 .

[219]  Ting Quan,et al.  Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy , 2015, Nano Research.

[220]  Xihong Hao,et al.  Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films , 2015 .

[221]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[222]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[223]  Zongping Shao,et al.  Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. , 2015, Chemical Society reviews.

[224]  Sang‐Woo Kim,et al.  Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. , 2015, ChemSusChem.

[225]  A. Bell,et al.  Synthesis of nano-structured Bi1−xBaxFeO3 ceramics with enhanced magnetic and electrical properties , 2015 .

[226]  Xiucai Wang,et al.  Performance enhancement of PZT material for circular diaphragm energy harvester , 2015, Journal of Materials Science: Materials in Electronics.

[227]  S. Young,et al.  Materials Design of Visible-Light Ferroelectric Photovoltaics from First Principles , 2015 .

[228]  A. Paul Blessington Selvadurai,et al.  Investigation of structural and optical spectroscopy of 5 % Pr doped (Bi0.5Na0.5) TiO3 ferroelectric ceramics: site depended study , 2015, Journal of Materials Science: Materials in Electronics.

[229]  Jaeyun Lee,et al.  Strain-based piezoelectric energy harvesting for wireless sensor systems in a tire , 2015 .

[230]  Rahul Vaish,et al.  Experimental Study on Waste Heat Energy Harvesting using Lead Zirconate Titanate (PZT‐5H) Pyroelectric Ceramics , 2015 .

[231]  Licheng Deng,et al.  A vibration energy harvester using AlN piezoelectric cantilever array , 2015 .

[232]  T. Takagi,et al.  Thermal energy harvesting by high frequency actuation of magnetic shape memory alloy films , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[233]  X. D. Xie,et al.  Energy harvesting from a vehicle suspension system , 2015 .

[234]  D. Guyomar,et al.  Energy harvesting using hybridization of dielectric nanocomposites and electrets , 2015 .

[235]  G. Zou,et al.  Nano piezoelectric/piezomagnetic energy harvester with surface effect based on thickness shear mode , 2015 .

[236]  Li-dong Zhao,et al.  Thermoelectric materials: Energy conversion between heat and electricity , 2015 .

[237]  Yaniv Gelbstein,et al.  Functional Graded Germanium–Lead Chalcogenide‐Based Thermoelectric Module for Renewable Energy Applications , 2015 .

[238]  D. J. Clark,et al.  Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. , 2015, Journal of the American Chemical Society.

[239]  Dina Simunic,et al.  eWALL radiofrequency energy harvesting system , 2015, 2015 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom).

[240]  Yong-Jun Kim,et al.  Modeling of a honeycomb-shaped pyroelectric energy harvester for human body heat harvesting , 2015 .

[241]  Han Byul Kang,et al.  (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators , 2015 .

[242]  Zhiming M. Wang,et al.  Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect , 2015, Frontiers of Materials Science.

[243]  Chang-Hyeon Ji,et al.  Macro fiber composite-based low frequency vibration energy harvester , 2015 .

[244]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[245]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[246]  M. Zhang,et al.  Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting , 2015 .

[247]  Hyun Suk Jung,et al.  Ferroelectric Polarization in CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[248]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[249]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[250]  Peter J. Murphy,et al.  Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting. , 2015, ACS applied materials & interfaces.

[251]  Mohammad H. Malakooti,et al.  Piezoelectric energy harvesting through shear mode operation , 2015 .

[252]  M. Guan,et al.  A Novel Frequency Tunable Mechanism for Piezoelectric Energy Harvesting System , 2015 .

[253]  Juan Bisquert,et al.  Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[254]  Lei Li,et al.  Analysis of Energy Harvesting Performance for $d_{15}$ Mode Piezoelectric Bimorph in Series Connection Based on Timoshenko Beam Model , 2015, IEEE/ASME Transactions on Mechatronics.

[255]  C. Bowen,et al.  Energy Harvesting Technologies for Tire Pressure Monitoring Systems , 2015 .

[256]  Kai Zhu,et al.  Interface band structure engineering by ferroelectric polarization in perovskite solar cells , 2015 .

[257]  J. Ji,et al.  Recent development and application of thermoelectric generator and cooler , 2015 .

[258]  Jun Chen,et al.  Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High‐Efficiency Energy‐Harvesting and Self‐Powered Sensing , 2015, Advanced materials.

[259]  Jun‐Bo Yoon,et al.  Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight , 2015 .

[260]  Asan Gani Abdul Muthalif,et al.  Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results , 2015 .

[261]  Yan Yu,et al.  Pyroelectric energy harvesting devices based-on Pb[(MnxNb1−x)1/2(MnxSb1−x)1/2]y(ZrzTi1−z)1−yO3 ceramics , 2015 .

[262]  Qiang Li,et al.  Enhanced temperature stability in Tb-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 lead free ceramics , 2015 .

[263]  Ping Li,et al.  Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester , 2015, Microsystem Technologies.

[264]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[265]  Lye Sun Woh,et al.  Spiral electrode d33 mode piezoelectric diaphragm combined with proof mass as energy harvester , 2015 .

[266]  D. Guyomar,et al.  Thickness effects of electret and polymer for energy harvesting: Case of CYTOP- CTLM and polyurethane , 2015 .

[267]  P. Gasnier,et al.  An electret-based aeroelastic flutter energy harvester , 2015 .

[268]  Scott D. Moss,et al.  Scaling and power density metrics of electromagnetic vibration energy harvesting devices , 2015 .

[269]  Ping Li,et al.  Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations , 2015 .

[270]  Se Yeong Jeong,et al.  Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network , 2015 .

[271]  Qingshuo Wei,et al.  Recent Progress on PEDOT-Based Thermoelectric Materials , 2015, Materials.

[272]  Farid Ullah Khan,et al.  State of the art in acoustic energy harvesting , 2015 .

[273]  K. Bartholomé,et al.  Thermoelectric efficiency of (1 - x)(GeTe) x(Bi2Se0.2Te2.8) and implementation into highly performing thermoelectric power generators. , 2015, Dalton transactions.

[274]  Robert Bogue,et al.  Energy harvesting: a review of recent developments , 2015 .

[275]  Alper Erturk,et al.  Three-Degree-of-Freedom Hybrid Piezoelectric-Inductive Aeroelastic Energy Harvester Exploiting a Control Surface , 2015 .

[276]  Wei Wang,et al.  A hybrid micro vibration energy harvester with power management circuit , 2015 .

[277]  D. Inman,et al.  Miniature Contactless Piezoelectric Wind Turbine , 2015 .

[278]  Sevki Demirbas,et al.  Implementation of a New Contactless Piezoelectric Wind Energy Harvester to a Wireless Weather Station , 2014 .

[279]  Seong Kwang Hong,et al.  Establishment of the evaluation standard and the analysis technique for the tip mass method in piezoelectric energy - harvesting systems , 2014 .

[280]  T. Takagi,et al.  High Frequency Thermal Energy Harvesting Using Magnetic Shape Memory Films , 2014 .

[281]  Wei Wang,et al.  Energy harvester array using piezoelectric circular diaphragm for rail vibration , 2014 .

[282]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[283]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[284]  Chuan Tian,et al.  Energy harvesting from low frequency applications using piezoelectric materials , 2014 .

[285]  Zhong Lin Wang,et al.  Biocompatible Nanogenerators through High Piezoelectric Coefficient 0.5Ba(Zr0.2Ti0.8)O3‐0.5(Ba0.7Ca0.3)TiO3 Nanowires for In‐Vivo Applications , 2014, Advanced materials.

[286]  J. Bos,et al.  Half-Heusler thermoelectrics: a complex class of materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[287]  Li Zheng,et al.  Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy , 2014 .

[288]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[289]  Xiuhan Li,et al.  3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. , 2014, ACS nano.

[290]  Robert A. Taylor,et al.  Recent advances in thermoelectric materials and solar thermoelectric generators – a critical review , 2014 .

[291]  Alperen Toprak,et al.  Piezoelectric energy harvesting: State-of-the-art and challenges , 2014 .

[292]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[293]  Shiqiao Gao,et al.  Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations , 2014 .

[294]  D. Guyomar,et al.  Analysis of thermal energy harvesting using ferromagnetic materials , 2014 .

[295]  D. Guyomar,et al.  Combination of electrostrictive polymers composites and electrets for energy harvesting capability , 2014 .

[296]  Suhana Mohd Said,et al.  Recent advances on Mg2Si1−xSnx materials for thermoelectric generation , 2014 .

[297]  Zhong Lin Wang,et al.  Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies , 2014, Nano Research.

[298]  S. Kar‐Narayan,et al.  Polymer-based nanopiezoelectric generators for energy harvesting applications , 2014 .

[299]  Giovanni Pennelli,et al.  Review of nanostructured devices for thermoelectric applications , 2014, Beilstein journal of nanotechnology.

[300]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[301]  Jiamei Jin,et al.  Rotational piezoelectric wind energy harvesting using impact-induced resonance , 2014 .

[302]  Ye Zhang,et al.  Piezoelectric-based energy harvesting in bridge systems , 2014 .

[303]  Yongliang Li,et al.  Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system , 2014 .

[304]  Xuezheng Jiang,et al.  Piezoelectric energy harvesting from traffic-induced pavement vibrations , 2014 .

[305]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[306]  Jingjing Zhao,et al.  A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors , 2014, Sensors.

[307]  Thomas A. Berfield,et al.  A bi-stable buckled energy harvesting device actuated via torque arms , 2014 .

[308]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[309]  Liwei Lin,et al.  High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. , 2014, ACS applied materials & interfaces.

[310]  Rafael Sánchez,et al.  Thermoelectric energy harvesting with quantum dots , 2014, Nanotechnology.

[311]  Simiao Niu,et al.  Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. , 2014, ACS nano.

[312]  Noureddine Bouhaddi,et al.  Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions , 2014 .

[313]  Fenggong Wang,et al.  Semiconducting ferroelectric photovoltaics through Zn 2+ doping into KNbO 3 and polarization rotation , 2014 .

[314]  Ying Dong,et al.  Energy harvester array using piezoelectric circular diaphragm for broadband vibration , 2014 .

[315]  Shiqiao Gao,et al.  An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester , 2014 .

[316]  S. E. Prasad,et al.  A Shear-Mode Energy Harvesting Device Based on Torsional Stresses , 2014, IEEE/ASME Transactions on Mechatronics.

[317]  Karla Mossi,et al.  Experimental analysis of radiation heat–based energy harvesting through pyroelectricity , 2014 .

[318]  Chengkuo Lee,et al.  Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb(Zr0.52, Ti0.48)O 3 microcantilever , 2014 .

[319]  Ezhilarasi Deenadayalan,et al.  A review of acoustic energy harvesting , 2014 .

[320]  Hua Yu,et al.  A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes , 2014, Sensors.

[321]  Fenggong Wang,et al.  Band gap engineering strategy via polarization rotation in perovskite ferroelectrics , 2014 .

[322]  Weiqing Yang,et al.  Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator , 2014 .

[323]  Ulrich Schmid,et al.  Unimorph and bimorph piezoelectric energy harvester stimulated by β-emitting radioisotopes: a modeling study , 2014 .

[324]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[325]  H. Goldsmid,et al.  Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation , 2014, Materials.

[326]  Jongbaeg Kim,et al.  A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion , 2014 .

[327]  Shan X. Wang,et al.  Magnetic energy harvesting properties of piezofiber bimorph/NdFeB composites , 2014 .

[328]  Paul Cahill,et al.  Energy Harvesting from Train-Induced Response in Bridges , 2014 .

[329]  Cesare Stefanini,et al.  Piezoelectric Energy Harvesting Solutions , 2014, Sensors.

[330]  Jari Juuti,et al.  Combined electrical and electromechanical simulations of a piezoelectric cymbal harvester for energy harvesting from walking , 2014 .

[331]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[332]  Ravi Anant Kishore,et al.  Ultra-Low Wind Speed Piezoelectric Windmill , 2014 .

[333]  Zhou Li,et al.  Decoupling interrelated parameters for designing high performance thermoelectric materials. , 2014, Accounts of chemical research.

[334]  Jaeyun Lee,et al.  Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires , 2014 .

[335]  Vladislav Singule,et al.  Model-based design and test of vibration energy harvester for aircraft application , 2014 .

[336]  Olle Heinonen,et al.  Polymer piezoelectric energy harvesters for low wind speed , 2014 .

[337]  Yonas Tadesse,et al.  Characterization of Pyroelectric Materials for Energy Harvesting from Human Body , 2014 .

[338]  Xinyu Liu,et al.  High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering , 2013 .

[339]  Xiaobiao Shan,et al.  A new energy harvester using a piezoelectric and suspension electromagnetic mechanism , 2013 .

[340]  Yuji Suzuki,et al.  Suspended electrodes for reducing parasitic capacitance in electret energy harvesters , 2013 .

[341]  Zhengguo Shang,et al.  A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging , 2013 .

[342]  Y. H. Jeong,et al.  High energy-density 0.72Pb(Zr0.47Ti0.53)O3-0.28Pb[(Zn0.45Ni0.55)1/3Nb2/3]O3 thick films fabricated by tape casting for energy-harvesting-device applications , 2013 .

[343]  Han Yan,et al.  Integrated Energy-Harvesting System by Combining the Advantages of Polymer Solar Cells and Thermoelectric Devices , 2013 .

[344]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[345]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[346]  D. Guyomar,et al.  A new technique for maximizing the energy harvested using electrostrictive polymer composite , 2013 .

[347]  Swee Leong Kok,et al.  Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism , 2013, 2013 IEEE Conference on Clean Energy and Technology (CEAT).

[348]  Fei Wang,et al.  An electret-based energy harvesting device with a wafer-level fabrication process , 2013 .

[349]  G. Hodes Perovskite-Based Solar Cells , 2013, Science.

[350]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[351]  Amr M. Baz,et al.  Single Degree of Freedom Shear-Mode Piezoelectric Energy Harvester , 2013 .

[352]  Haixia Zhang,et al.  r-Shaped hybrid nanogenerator with enhanced piezoelectricity. , 2013, ACS nano.

[353]  Long Lin,et al.  Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies , 2013 .

[354]  X. D. Xie,et al.  Wind energy harvesting with a piezoelectric harvester , 2013 .

[355]  Dominique Siegert,et al.  Piezoelectric energy harvesting from traffic-induced bridge vibrations , 2013 .

[356]  V. Fridkin Parity nonconservation and bulk photovoltaic effect in the crystal without symmetry center , 2013, Proceedings of ISAF-ECAPD-PFM 2012.

[357]  Siyi Wang,et al.  Radio‐frequency energy harvesting potential: a stochastic analysis , 2013, Trans. Emerg. Telecommun. Technol..

[358]  S. Nahm,et al.  Relation between piezoelectric properties of ceramics and output power density of energy harvester , 2013 .

[359]  Dibin Zhu,et al.  A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data , 2013 .

[360]  Xiaoning Jiang,et al.  Energy harvesting using a PZT ceramic multilayer stack , 2013 .

[361]  Atanas A. Popov,et al.  Piezoelectric energy harvesting for tyre pressure measurement applications , 2013 .

[362]  Jong-Hyun Ahn,et al.  Graphene Based Nanogenerator for Energy Harvesting , 2013 .

[363]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[364]  Hyunjin Kim,et al.  Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator , 2013, Nanotechnology.

[365]  William W. Clark,et al.  Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting , 2013 .

[366]  Girish Kumar Singh,et al.  Solar power generation by PV (photovoltaic) technology: A review , 2013 .

[367]  Alex K.-Y. Jen,et al.  Rational Design of Advanced Thermoelectric Materials , 2013 .

[368]  Ulrike Wallrabe,et al.  Review on Electrodynamic Energy Harvesters - A Classification Approach , 2013, Micromachines.

[369]  Feng Qiu,et al.  Towards high-performance polymer-based thermoelectric materials , 2013 .

[370]  Chiara Petrioli,et al.  Energy-harvesting WSNs for structural health monitoring of underground train tunnels , 2013, 2013 Proceedings IEEE INFOCOM.

[371]  Hyungkwan Jang,et al.  Piezoelectric energy harvesting system for the vertical vibration of superconducting Maglev train , 2013, Journal of Electroceramics.

[372]  Chieh-Min Wang,et al.  A magnetic/piezoelectric-based thermal energy harvester , 2013, Smart Structures.

[373]  Haixia Zhang,et al.  Low frequency PVDF piezoelectric energy harvester with combined d31 and d33 operating modes , 2013, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[374]  Jianmin Miao,et al.  Proof mass effects on spiral electrode d 33 mode piezoelectric diaphragm-based energy harvester , 2013 .

[375]  Seeram Ramakrishna,et al.  A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials , 2013 .

[376]  Dong-You Choi,et al.  Comparative Study of Antenna Designs for RF Energy Harvesting , 2013 .

[377]  Daniel J. Inman,et al.  Parametrically excited nonlinear piezoelectric compact wind turbine , 2013 .

[378]  Wen Zhiyu,et al.  A Piezoelectric Wind Energy Harvester for Wireless Sensor Networks , 2013 .

[379]  Young Hun Jeong,et al.  Performance of unimorph cantilever generator using Cr/Nb doped Pb(Zr0.54Ti0.46)O3 thick film for energy harvesting device applications , 2013 .

[380]  Alper Erturk,et al.  Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling , 2013 .

[381]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[382]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[383]  Kyung-Hwan Park,et al.  Energy harvesting from ambient electromagnetic wave using human body as antenna , 2013 .

[384]  D. Guyomar,et al.  Optimization of energy harvesting conversion using the hybridization of electrostrictive polymers and electrets , 2013 .

[385]  W. Sakamoto,et al.  Vibrational Energy Harvesting Using a Unimorph with PZT- or BT-Based Ceramics , 2013 .

[386]  Xiaobiao Shan,et al.  A New Mathematical Model for a Piezoelectric-Electromagnetic Hybrid Energy Harvester , 2013 .

[387]  Gang Wang,et al.  Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory , 2013 .

[388]  Lei Yang,et al.  Nanostructured thermoelectric materials: current research and future challenge , 2012 .

[389]  S. Trolier-McKinstry,et al.  Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity , 2012 .

[390]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[391]  Qingjie Zhang,et al.  Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds , 2012, Nanomaterials.

[392]  Sutrisno Ibrahim,et al.  A review on frequency tuning methods for piezoelectric energy harvesting systems , 2012 .

[393]  Zafar Hussain Ibupoto,et al.  Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric , 2012 .

[394]  Xueliang Huang,et al.  A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems , 2012, IEEE Transactions on Magnetics.

[395]  Nicolo' Zampieri,et al.  Design, Simulation, and Testing of Energy Harvesters With Magnetic Suspensions for the Generation of Electricity From Freight Train Vibrations , 2012 .

[396]  Kanwar Bharat Singh,et al.  Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires , 2012 .

[397]  Jong-Hyun Ahn,et al.  A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes , 2012 .

[398]  Qifa Zhou,et al.  Vibration energy harvesting using piezoelectric circular diaphragm array , 2012, 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials.

[399]  B. Guiffard,et al.  Commercial piezoelectric unimorph diaphragm as a magnetic energy harvester , 2012 .

[400]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[401]  Daniel Guyomar,et al.  Hybridization of electrostrictive polymers and electrets for mechanical energy harvesting , 2012 .

[402]  Hongduo Zhao,et al.  A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement , 2012 .

[403]  Yoon Seok Yang,et al.  Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding , 2012, Sensors.

[404]  Jaehwa Jeong,et al.  Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application. , 2012, Journal of nanoscience and nanotechnology.

[405]  Jingkun Xu,et al.  Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review , 2012 .

[406]  F. Edler,et al.  Metrology for energy harvesting , 2012 .

[407]  Yoshinori Iguchi,et al.  Trench-filled cellular parylene electret for piezoelectric transducer , 2012 .

[408]  J. Fuh,et al.  Structure and electrical properties of 〈001〉 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics , 2012 .

[409]  N. M. White,et al.  Numerical Model of a Non-Contact Piezoelectric Energy Harvester for Rotating Objects , 2012, IEEE Sensors Journal.

[410]  Yong Zhang,et al.  A model for the energy harvesting performance of shear mode piezoelectric cantilever , 2012 .

[411]  Philip S. Casey,et al.  Research progress on polymer–inorganic thermoelectric nanocomposite materials , 2012 .

[412]  Nan-Chyuan Tsai,et al.  Human powered MEMS-based energy harvest devices , 2012 .

[413]  Sang‐Woo Kim,et al.  Energy harvesting based on semiconducting piezoelectric ZnO nanostructures , 2012 .

[414]  D. Guyomar,et al.  Electrostrictive polymers for mechanical energy harvesting , 2012 .

[415]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[416]  Jari Juuti,et al.  Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression , 2012, Journal of Electroceramics.

[417]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[418]  Jeffrey W. Fergus,et al.  Oxide materials for high temperature thermoelectric energy conversion , 2012 .

[419]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[420]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[421]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[422]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[423]  Meurig W. Williams Triboelectric charging of insulating polymers–some new perspectives , 2012 .

[424]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[425]  N. Goo,et al.  Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill , 2012 .

[426]  Jayant Sirohi,et al.  Harvesting Wind Energy Using a Galloping Piezoelectric Beam , 2012 .

[427]  A. Rappe,et al.  First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions , 2011 .

[428]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[429]  E. Guglielmelli,et al.  Optimization of kinetic energy harvesters design for fully implantable Cochlear Implants , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[430]  Jayant Sirohi,et al.  Piezoelectric wind energy harvester for low-power sensors , 2011 .

[431]  Orphée Cugat,et al.  Magnetostrictive–piezoelectric composite structures for energy harvesting , 2011 .

[432]  Sahn Nahm,et al.  High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices , 2011 .

[433]  M. Ohtaki Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source , 2011 .

[434]  Ulrich Schmid,et al.  Analysis and modeling of a piezoelectric energy harvester stimulated by β-emitting radioisotopes , 2011 .

[435]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[436]  R. van Schaijk,et al.  Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator , 2011 .

[437]  Long Lin,et al.  A Nanogenerator for Energy Harvesting from a Rotating Tire and its Application as a Self‐Powered Pressure/Speed Sensor , 2011, Advanced materials.

[438]  A. Cuadras,et al.  Multimodal piezoelectric wind energy harvesters , 2011 .

[439]  C. Hamitouche,et al.  The Use of Piezoceramics As Electrical Energy Harvesters Within Instrumented Knee Implant During Walking , 2011, IEEE/ASME Transactions on Mechatronics.

[440]  Terry M. Tritt,et al.  Thermoelectric Phenomena, Materials, and Applications , 2011 .

[441]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[442]  D. Guyomar,et al.  Electrostrictive polymer composite for energy harvesters and actuators , 2011 .

[443]  O. Hansen,et al.  Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[444]  M. Ferri,et al.  Thermoelectric Materials in MEMS and NEMS: A Review , 2011 .

[445]  Dung-An Wang,et al.  A shear mode piezoelectric energy harvester based on a pressurized water flow , 2011 .

[446]  Raziel Riemer,et al.  Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions , 2011, Journal of NeuroEngineering and Rehabilitation.

[447]  John R. Tumbleston,et al.  Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells , 2011 .

[448]  Mingsen Guo,et al.  A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[449]  A. Heeger,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[450]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[451]  Yuji Suzuki,et al.  Recent progress in MEMS electret generator for energy harvesting , 2011 .

[452]  Litao Sun,et al.  Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells , 2011 .

[453]  Chen Xu,et al.  Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy , 2011, Advanced materials.

[454]  D. Guyomar,et al.  Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites , 2011 .

[455]  Xiaotong Gao,et al.  Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths. , 2010, Applied physics letters.

[456]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[457]  Jaesung Song,et al.  Applications of Self Power Device Using Piezoelectric Triple-Morph Cantilever for Energy Harvesting , 2010 .

[458]  Nam Seo Goo,et al.  Use of a piezo‐composite generating element for harvesting wind energy in an urban region , 2010 .

[459]  Soon-Duck Kwon,et al.  A T-shaped piezoelectric cantilever for fluid energy harvesting , 2010 .

[460]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[461]  Minbaek Lee,et al.  Nanowire-quantum dot hybridized cell for harvesting sound and solar energies , 2010 .

[462]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[463]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[464]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[465]  Benoit Guiffard,et al.  Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites , 2010 .

[466]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[467]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[468]  S. Boisseau,et al.  Optimization of an electret-based energy harvester , 2010, 1111.3102.

[469]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[470]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[471]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[472]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[473]  Zhihua Feng,et al.  Piezoelectric Wind-Energy-Harvesting Device with Reed and Resonant Cavity , 2010 .

[474]  Carmel Majidi,et al.  Analysis and design principles for shear-mode piezoelectric energy harvesting with ZnO nanoribbons , 2010 .

[475]  Xiaobiao Shan,et al.  Modeling and Improvement of a Cymbal Transducer in Energy Harvesting , 2010 .

[476]  Benoit Guiffard,et al.  Modeling and experimentation on an electrostrictive polymer composite for energy harvesting , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[477]  B. Ploss,et al.  Pyroelectric properties of BiFeO3 ceramics prepared by a modified solid-state-reaction method , 2010 .

[478]  Chengkuo Lee,et al.  Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms , 2010 .

[479]  Yu Zhou,et al.  Design and characterization of an electromagnetic energy harvester for vehicle suspensions , 2010 .

[480]  David A W Barton,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2010 .

[481]  Seung Jin Oh,et al.  Development of a tree‐shaped wind power system using piezoelectric materials , 2010 .

[482]  N. Elvin,et al.  Energy Harvesting from Highly Unsteady Fluid Flows using Piezoelectric Materials , 2010 .

[483]  E. Dallago,et al.  Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects , 2010, IEEE Transactions on Power Electronics.

[484]  U. Gibson,et al.  A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells , 2010 .

[485]  Norman M. Wereley,et al.  Energy Harvesting Devices Using Macro-fiber Composite Materials , 2010 .

[486]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[487]  Wei Wang,et al.  Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal cantilever , 2010 .

[488]  Holger Kleinke,et al.  New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides† , 2010 .

[489]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[490]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[491]  K. Koumoto,et al.  Development of novel thermoelectric materials by reduction of lattice thermal conductivity , 2010, Science and technology of advanced materials.

[492]  William W. Clark,et al.  Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system , 2010 .

[493]  Siu Wing Or,et al.  Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal , 2010 .

[494]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[495]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[496]  S. Trolier-McKinstry,et al.  ⟨001⟩ textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range , 2009 .

[497]  Richard E. Eitel,et al.  Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics , 2009 .

[498]  Zhiyuan Gao,et al.  Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators , 2009 .

[499]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[500]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[501]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[502]  Amen Agbossou,et al.  On thermoelectric and pyroelectric energy harvesting , 2009 .

[503]  Bruno Ando,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2009 .

[504]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[505]  Frank T. Fisher,et al.  A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching , 2009 .

[506]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[507]  Xiangqian Xiu,et al.  The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of GaN , 2009 .

[508]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[509]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[510]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[511]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[512]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[513]  Yonas Tadesse,et al.  Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic , 2009 .

[514]  T. J. McMahon,et al.  History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review , 2009 .

[515]  Colin R. McInnes,et al.  Enhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance , 2008 .

[516]  Bongyoung Yoo,et al.  Recent progress in electrodeposition of thermoelectric thin films and nanostructures , 2008 .

[517]  P. Kamat Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[518]  Peter Woias,et al.  Characterization of different beam shapes for piezoelectric energy harvesting , 2008 .

[519]  Song-Yul Choe,et al.  Piezoelectric Energy Harvesting Device in a Viscous Fluid for High Amplitude Vibration Application , 2008 .

[520]  E. Halvorsen Energy Harvesters Driven by Broadband Random Vibrations , 2008, Journal of Microelectromechanical Systems.

[521]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[522]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[523]  T. Seebeck,et al.  Recent advances on thermoelectric materials , 2008, 1106.0888.

[524]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[525]  D. G. Walker,et al.  Review of electronic transport models for thermoelectric materials , 2008 .

[526]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[527]  Henry A. Sodano,et al.  Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack , 2008 .

[528]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[529]  C. Fennie,et al.  Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite , 2008, 0803.0042.

[530]  Ralf Moos,et al.  Textured PMN–PT and PMN–PZT , 2008 .

[531]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[532]  R. Vaglio,et al.  Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br) , 2008 .

[533]  Kevin M. Farinholt,et al.  Energy harvesting from a backpack instrumented with piezoelectric shoulder straps , 2007 .

[534]  G. Carman,et al.  Thermal energy harvesting device using ferromagnetic materials , 2007 .

[535]  Chris Van Hoof,et al.  Optimization of a piezoelectric unimorph for shock and impact energy harvesting , 2007 .

[536]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[537]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[538]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[539]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[540]  Xingzhong Zhao,et al.  Energy harvesting with piezoelectric drum transducer , 2007 .

[541]  Hyeoungwoo Kim,et al.  Small scale windmill , 2007 .

[542]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[543]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[544]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[545]  Jan T. Bialasiewicz,et al.  Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey , 2006, IEEE Transactions on Industrial Electronics.

[546]  Kenji Uchino,et al.  Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers , 2006 .

[547]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[548]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[549]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[550]  F Costa,et al.  Piezoelectric diaphragm for vibration energy harvesting. , 2005, Ultrasonics.

[551]  K. Uchino,et al.  Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations , 2005 .

[552]  S. Lang Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .

[553]  N. Setter,et al.  Preparation and Characterization of KNbO3 Ceramics , 2005 .

[554]  Fred D. Discenzo,et al.  Resonant packaged piezoelectric power harvester for machinery health monitoring , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[555]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[556]  D. Markley,et al.  Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment , 2004 .

[557]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[558]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[559]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[560]  M. Grätzel Dye-sensitized solar cells , 2003 .

[561]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[562]  J. Rath,et al.  Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications , 2003 .

[563]  Yasuhiko Arakawa,et al.  Progress in GaN-based quantum dots for optoelectronics applications , 2002 .

[564]  P. Rehrig,et al.  Templated Grain Growth of Textured Piezoelectric Ceramics , 2001 .

[565]  Andrei Osinsky,et al.  Pyroelectric properties of AlN , 2000 .

[566]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[567]  G. Hayward,et al.  A theoretical study on the influence of some constituent material properties on the behavior of 1‐3 connectivity composite transducers , 1995 .

[568]  G. Harbauer,et al.  Implantable physiological power supply with PVDF film , 1984 .

[569]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[570]  B. Sankapal,et al.  Dye-sensitized solar cells , 2019, Energy Materials.

[571]  Muhammad Mustafa Hussain,et al.  Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications , 2017 .

[572]  Jin-Woo Han,et al.  Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting , 2017 .

[573]  Tae Yun Kim,et al.  Boosting Power‐Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties , 2017 .

[574]  Derya Baran,et al.  Review—Organic Materials for Thermoelectric Energy Generation , 2017 .

[575]  Jayakanth Ravichandrana JMR EARLY CAREER SCHOLARS IN MATERIALS SCIENCE ANNUAL ISSUE: REVIEW Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices , 2017 .

[576]  Yamin Leprince-Wang,et al.  A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers , 2017 .

[577]  Xiaolin Wang,et al.  Energy-storage performance and pyroelectric energy harvesting effect of PNZST antiferroelectric thin films , 2016, Journal of Materials Science: Materials in Electronics.

[578]  Soma Dutta,et al.  Preparation and Characterization of BaTiO3–PbZrTiO3 Coating for Pyroelectric Energy Harvesting , 2016, Journal of Electronic Materials.

[579]  Santanu Chattopadhyay,et al.  Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting , 2016 .

[580]  Zhong Lin Wang,et al.  Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors , 2015 .

[581]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[582]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[583]  Zhong Lin Wang,et al.  Hybrid energy cell for harvesting mechanical energy from one motion using two approaches , 2015 .

[584]  Mengdi Han,et al.  High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies , 2015 .

[585]  Sondipon Adhikari,et al.  Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device , 2015 .

[586]  Xiaofeng Wang,et al.  Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3 film , 2014 .

[587]  Chunsheng Yang,et al.  Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film , 2014 .

[588]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[589]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[590]  G. Uma,et al.  Pyroelectric-Based Solar and Wind Energy Harvesting System , 2014, IEEE Transactions on Sustainable Energy.

[591]  Ryoji Funahashi,et al.  Thermoelectric Ceramics for Energy Harvesting , 2013 .

[592]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[593]  Yi Chiu,et al.  Flat and robust out-of-plane vibrational electret energy harvester , 2012 .

[594]  R. Friend,et al.  Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer , 2012 .

[595]  M. Gaur,et al.  Optical properties of solution grown PVDF-ZnO nanocomposite thin films , 2012, Journal of Polymer Research.

[596]  Wei Wang,et al.  Vibration energy harvesting with a clamped piezoelectric circular diaphragm , 2012 .

[597]  Daniel J. Inman,et al.  Energy Harvesting From Turbulence-Induced Vibration in Air Flow: Artificial Piezoelectric Grass Concept , 2011 .

[598]  Othman Sidek,et al.  A review of vibration-based MEMS piezoelectric energy harvesters , 2011 .

[599]  Kan Junwu,et al.  Modeling and simulation of piezoelectric composite diaphragms for energy harvesting , 2009 .

[600]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[601]  Toshio Kimura Application of texture engineering to piezoelectric ceramics : A review , 2006 .

[602]  N. Setter,et al.  Preparation and characterization of (K0.5Na0.5)NbO3 ceramics , 2006 .

[603]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[604]  C. Choy,et al.  Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. , 2000, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[605]  W. Xu,et al.  Fortieth Annual General Meeting and Dinner of the Scottish Region , 1975 .

[606]  J. Pankove,et al.  Epitaxially grown AlN and its optical band gap , 1973 .

[607]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[608]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[609]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .