Computational Inference in Systems Biology

Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem. The computational costs associated with repeatedly solving the ODEs are often high. Aimed at reducing this cost, new concepts using gradient matching have been proposed. This paper combines current adaptive gradient matching approaches, using Gaussian processes, with a parallel tempering scheme, and conducts a comparative evaluation with current methods used for parameter inference in ODEs.

[1]  Ryan P. Adams,et al.  Slice sampling covariance hyperparameters of latent Gaussian models , 2010, NIPS.

[2]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[3]  A. Millar,et al.  The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops , 2012, Molecular systems biology.

[4]  Ivan Vujačić,et al.  Inferring latent gene regulatory network kinetics , 2013, Statistical applications in genetics and molecular biology.

[5]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[6]  Manfred Borovcnik,et al.  A Probabilistic Perspective , 1991 .

[7]  B. Calderhead A study of Population MCMC for estimatingBayes Factors over nonlinear ODE models , 2008 .

[8]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[9]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[10]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[11]  Hulin Wu,et al.  Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.

[12]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[13]  David Campbell,et al.  Smooth functional tempering for nonlinear differential equation models , 2012, Stat. Comput..

[14]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[15]  Dirk Husmeier,et al.  ODE parameter inference using adaptive gradient matching with Gaussian processes , 2013, AISTATS.

[16]  Alfred J. Lotka,et al.  The growth of mixed populations: Two species competing for a common food supply , 1978 .

[17]  Mark A. Girolami,et al.  Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..

[18]  Michael Andrew Christie,et al.  Population MCMC methods for history matching and uncertainty quantification , 2010, Computational Geosciences.

[19]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[20]  Neil D. Lawrence,et al.  Learning and Inference in Computational Systems Biology , 2010, Computational molecular biology.

[21]  Carl E. Rasmussen,et al.  Derivative Observations in Gaussian Process Models of Dynamic Systems , 2002, NIPS.

[22]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.

[23]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.