A 2.2 $\mu\text{W}$, $-$12 dBm RF-Powered Wireless Current Sensing Readout Interface IC With Injection-Locking Clock Generation

This paper presents a wireless-powering current-sensing readout system on a CMOS platform for portable electrochemical measurement. The wireless sensing system includes energy-efficient power management circuitry, a sensor readout interface, and a backscattering wireless communication scheme. For power-and-area-constrained bio-sensing applications, the proposed readout circuitry incorporates an ultra-low-power potentiostatic system that generates a current according to the electrochemical reaction, as well as an oscillator-based time-to-digital converter instead of a voltage-domain analog-to-digital converter. To avoid a bulky battery and power-hungry clock reference, the chip is wirelessly powered and injection-locked by the modulated radio waves, which includes a 918 MHz carrier signal mixed with a 3.2 MHz modulated signal. The chip, implemented using a 0.18-μm CMOS process, occupies a silicon area of 1 mm2. The proposed design achieves a sensitivity of 289 Hz/nA and an R2 linearity of 0.997 over a current range of 200 nA while consuming 2.2 μW at a supply voltage of 0.8 V. The chip, integrated with a PCB antenna, has minimum sensitivities of -12 dBm and -25 dBm for RF-powering and injection-locking mechanisms, respectively.

[1]  Rahul Sarpeshkar,et al.  Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems , 2010 .

[2]  Ali M. Niknejad,et al.  Oscillator-Based Reactance Sensors With Injection Locking for High-Throughput Flow Cytometry Using Microwave Dielectric Spectroscopy , 2016, IEEE Journal of Solid-State Circuits.

[3]  Yu-Te Liao,et al.  A 3-$\mu\hbox{W}$ CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring , 2012, IEEE Journal of Solid-State Circuits.

[4]  Lin Li,et al.  Thermally Controlled Electrochemical CMOS Microsystem for Protein Array Biosensors , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Peng Zhang,et al.  An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring , 2015, IEEE Journal of Biomedical and Health Informatics.

[6]  Mo Zhang,et al.  Low-Power Low-Voltage Current Readout Circuit for Inductively Powered Implant System , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[7]  Arun Paidimarri,et al.  A 120nW 18.5kHz RC oscillator with comparator offset cancellation for ±0.25% temperature stability , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[8]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[9]  C. Fiocchi,et al.  Curvature compensated BiCMOS bandgap with 1 V supply voltage , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[10]  Edward H. Sargent,et al.  Nanostructured CMOS Wireless Ultra-Wideband Label-Free PCR-Free DNA Analysis SoC , 2014, IEEE Journal of Solid-State Circuits.

[11]  Graham A. Jullien,et al.  Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  J. M. Rochelle,et al.  A 100-ps time-resolution CMOS time-to-digital converter for positron emission tomography imaging applications , 2004, IEEE Journal of Solid-State Circuits.

[13]  J. Rabaey,et al.  A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators , 2003, IEEE J. Solid State Circuits.

[14]  Joseph Wang,et al.  Electrochemical Glucose Biosensors , 2008 .

[15]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[16]  Milan Polivka,et al.  Impedance Properties and Radiation Efficiency of Electrically Small Double and Triple Split-Ring Antennas for UHF RFID Applications , 2013, IEEE Antennas and Wireless Propagation Letters.

[17]  G A Jullien,et al.  A Wireless-Implantable Microsystem for Continuous Blood Glucose Monitoring , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[18]  K. Kotani,et al.  High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs , 2009, IEEE Journal of Solid-State Circuits.

[19]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[20]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[21]  Amine Bermak,et al.  Correction to "A Sub- μ W Embedded CMOS Temperature Sensor for RFID Food Monitoring Application" [Jun 10 1246-1255] , 2010, IEEE J. Solid State Circuits.

[22]  E. Klumperink,et al.  Intrinsic 1/f device noise reduction and its effect on phase noise in CMOS ring oscillators , 1999, IEEE J. Solid State Circuits.

[23]  H. Suzuki,et al.  Electrochemical pH-responsive valve for automatic sampling , 2008, 2008 IEEE Sensors.

[24]  Meisam Honarvar Nazari,et al.  An implantable continuous glucose monitoring microsystem in 0.18µm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[25]  Fan Zhang,et al.  A 23 µA RF-powered transmitter for biomedical applications , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[26]  K. Leung,et al.  A CMOS voltage reference based on weighted /spl Delta/V/sub GS/ for CMOS low-dropout linear regulators , 2003 .

[27]  Gerald Holweg,et al.  A Multifrequency Passive Sensing Tag With On-Chip Temperature Sensor and Off-Chip Sensor Interface Using EPC HF and UHF RFID Technology , 2011, IEEE Journal of Solid-State Circuits.

[28]  Bo Gao,et al.  A System-on-Chip EPC Gen-2 Passive UHF RFID Tag With Embedded Temperature Sensor , 2010, IEEE Journal of Solid-State Circuits.

[29]  Ifana Mahbub,et al.  A Low-Power 1-V Potentiostat for Glucose Sensors , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.