The Highest Chromosome Number and First Chromosome Fluorescent in situ Hybridization in the velvet worms of the family Peripatidae.

The diversity of Onychophora is poorly studied, despite there being nearly 200 described species divided in two families: Peripatidae and Peripatopsidae. Peripatid velvet worms are found mainly in the Neotropical region. The low morphological diversity in Peripatidae is an obstacle to determining its taxonomy, and chromosomal analyses can help clarify this. The aim of this work was to chromosomally analyze one species of Epiperipatus from Mato Grosso do Sul, Brazil. Conventional staining and telomeric fluorescent in situ hybridization (FISH) were performed with the gonads of three males of Epiperipatus sp. The specimens showed 2n♂ = 73, the largest diploid number found in Onychophora to date, with the majority of chromosomes acro/telocentrics and the largest element submetacentric. The FISH marked the telomeric region of all elements and revealed one Interstitial Telomeric Site (ITS) on the proximal region of the long arm large submetacentric chromosome. The absence of male meiosis and female cell division in the analyzed specimens prevented us from determining whether the unpaired large submetacentric is a sex chromosome, which could lead to the description of a rare sex chromosome system (SCS) in Onychophora, or a case of fusion between autosomes. In either case, the presence of ITS is a clear indication of chromosomal fusion.

[1]  G. Mayer,et al.  Revision of Tasmanian viviparous velvet worms (Onychophora : Peripatopsidae) with descriptions of two new species , 2018, Invertebrate Systematics.

[2]  M. Řezáč,et al.  Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae : Dysderidae): sibling species with sympatric distributions , 2018, Invertebrate Systematics.

[3]  G. Mayer,et al.  A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms , 2017, Organisms Diversity & Evolution.

[4]  G. Mayer,et al.  A new and critically endangered species and genus of Onychophora (Peripatidae) from the Brazilian savannah – a vulnerable biodiversity hotspot , 2015 .

[5]  K. Wolf,et al.  Evolutionary changes in the integument of the onychophoran Plicatoperipatus jamaicensis (Peripatidae) , 2014 .

[6]  Takamitsu A Kato,et al.  Direct DNA and PNA probe binding to telomeric regions without classical in situ hybridization , 2013, Molecular Cytogenetics.

[7]  Lars Hering,et al.  Unexplored Character Diversity in Onychophora (Velvet Worms): A Comparative Study of Three Peripatid Species , 2012, PloS one.

[8]  N. Jeffery,et al.  Genome size and chromosome number in velvet worms (Onychophora) , 2012, Genetica.

[9]  G. Mayer,et al.  A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names , 2012, ZooKeys.

[10]  D. Araujo,et al.  Sex Chromosomes and Meiosis in Spiders:A Review , 2012 .

[11]  G. Mayer,et al.  Cryptic Speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) Reveals an Underestimated Diversity among the Peripatid Velvet Worms , 2011, PloS one.

[12]  G. Mayer,et al.  Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters , 2010 .

[13]  A. Levan,et al.  NOMENCLATURE FOR CENTROMERIC POSITION ON CHROMOSOMES , 2009 .

[14]  R. Baptista,et al.  Brazilian species of Onychophora with notes on their taxonomy and distribution , 2009 .

[15]  L. Granjon,et al.  Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes , 2005, Heredity.

[16]  M. Rockman,et al.  Extensive Robertsonian rearrangement: implications for the radiation and biogeography of Planipapillus Reid (Onychophora: Peripatopsidae) , 2002 .

[17]  M. Rockman,et al.  EPISODIC CHROMOSOMAL EVOLUTION IN PLANIPAPILLUS (ONYCHOPHORA: PERIPATOPSIDAE): A PHYLOGENETIC APPROACH TO EVOLUTIONARY DYNAMICS AND SPECIATION , 2002, Evolution; international journal of organic evolution.

[18]  D. Briscoe,et al.  The use of chromosomal data in the systematics of viviparous onychophorans from Australia (Onychophora: Peripatopsidae) , 1995 .

[19]  T. New Onychophora in invertebrate conservation: priorities, practice and prospects , 1995 .

[20]  D. Briscoe,et al.  MORPHOLOGICAL, CYTOGENETIC AND ALLOZYMIC VARIATION WITHIN CEPHALOFOVEA (ONYCHOPHORA: PERIPATOPSIDAE) WITH DESCRIPTIONS OF THREE NEW SPECIES , 1995 .

[21]  Ws. Rasband ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA , 2011 .

[22]  A. Paglia,et al.  Livro vermelho da fauna brasileira ameaçada de extinção , 2008 .

[23]  M. Řezáč,et al.  Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae) , 2006, Chromosome Research.

[24]  F. Marec,et al.  The evolutionary origin of insect telomeric repeats, (TTAGG)N , 2005, Chromosome Research.

[25]  P. León,et al.  The genome of Epiperipatus biolleyi (Peripatidae), a Costa rican onychophoran , 1996 .

[26]  A. Reid Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships , 1996 .

[27]  A. Lockwood,et al.  Composition of the Blood in Onychophora , 1966, Nature.

[28]  T. Montgomery The spermatogenesis of peripatus (peripatopsis) balfouri up to the formation of the spermatid , 1900 .

[29]  M. Walker Phylogeny , biogeography and reproductive trends in the Onychophora , 2022 .