Learning neutrino effects in Cosmology with Convolutional Neural Networks

Measuring the sum of the three active neutrino masses, $M_\nu$, is one of the most important challenges in modern cosmology. Massive neutrinos imprint characteristic signatures on several cosmological observables in particular on the large-scale structure of the Universe. In order to maximize the information that can be retrieved from galaxy surveys, accurate theoretical predictions in the non-linear regime are needed. Currently, one way to achieve those predictions is by running cosmological numerical simulations. Unfortunately, producing those simulations requires high computational resources -- seven hundred CPU hours for each neutrino mass case. In this work, we propose a new method, based on a deep learning network (U-Net), to quickly generate simulations with massive neutrinos from standard $\Lambda$CDM simulations without neutrinos. We computed multiple relevant statistical measures of deep-learning generated simulations, and conclude that our method accurately reproduces the 3-dimensional spatial distribution of matter down to non-linear scales: $k < 0.7$ h/Mpc. Finally, our method allows us to generate massive neutrino simulations 10,000 times faster than the traditional methods.

[1]  T. Schwetz,et al.  Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity , 2016, Journal of High Energy Physics.

[2]  Minoru Yoshida,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[3]  Thomas Hofmann,et al.  Fast cosmic web simulations with generative adversarial networks , 2018, Computational Astrophysics and Cosmology.

[4]  M. Viel,et al.  Voids in massive neutrino cosmologies , 2015, 1506.03088.

[5]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[6]  A Godley,et al.  Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam. , 2008, Physical review letters.

[7]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[8]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[9]  R. B. Barreiro,et al.  Planck 2018 results , 2019, Astronomy & Astrophysics.

[10]  C. Carbone,et al.  DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos , 2015, 1505.07148.

[11]  S. Ho,et al.  Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses , 2018, Physical Review D.

[12]  Wei Chen,et al.  Learning to predict the cosmological structure formation , 2018, Proceedings of the National Academy of Sciences.

[13]  S. Ho,et al.  Improvement of cosmological neutrino mass bounds , 2016, 1605.04320.

[14]  L. Guzzo,et al.  Accurate fitting functions for peculiar velocity spectra in standard and massive-neutrino cosmologies , 2018, Astronomy & Astrophysics.

[15]  M. Viel,et al.  The effect of massive neutrinos on the BAO peak , 2015, 1505.07477.

[16]  M. Decowski,et al.  Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. , 2004, Physical review letters.

[17]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[18]  C. Kraus,et al.  Final results from phase II of the Mainz neutrino mass searchin tritium ${\beta}$ decay , 2004, hep-ex/0412056.

[19]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[20]  J. Valle,et al.  Neutrino oscillations refitted , 2014, 1405.7540.

[21]  A. Hourlier,et al.  Reactor ν̄e disappearance in the Double Chooz experiment , 2012, 1207.6632.

[22]  David Alonso,et al.  Cosmic voids: a novel probe to shed light on our Universe. , 2019, 1903.05161.

[23]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[24]  M. Weber,et al.  Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. , 2019, Physical review letters.

[25]  T. Schwetz,et al.  Updated fit to three neutrino mixing: status of leptonic CP violation , 2014, Journal of High Energy Physics.

[26]  Tejpreet Singh Golan,et al.  Observation of electron neutrino appearance in a muon neutrino beam. , 2013, Physical review letters.

[27]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[28]  J. Lesgourgues,et al.  Neutrino Mass from Cosmology , 2012, 1212.6154.

[29]  Arka Banerjee,et al.  Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.

[30]  Laurence Perreault Levasseur,et al.  Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.

[31]  C. Carbone,et al.  Massive neutrinos leave fingerprints on cosmic voids , 2018, Monthly Notices of the Royal Astronomical Society.