Learning Neutrino Effects in Cosmology with Convolutional Neural Network

Measuring the sum of the three active neutrino masses, M ν , is one of the most important challenges in modern cosmology. Massive neutrinos imprint characteristic signatures on several cosmological observables, in particular, on the large-scale structure of the universe. In order to maximize the information that can be retrieved from galaxy surveys, accurate theoretical predictions in the nonlinear regime are needed. Currently, one way to achieve those predictions is by running cosmological numerical simulations. Unfortunately, producing those simulations requires high computational resources—several hundred to thousand core hours for each neutrino mass case. In this work, we propose a new method, based on a deep-learning network (D3M), to quickly generate simulations with massive neutrinos from standard ΛCDM simulations without neutrinos. We computed multiple relevant statistical measures of deep-learning generated simulations and conclude that our approach is an accurate alternative to the traditional N-body techniques. In particular the power spectrum is within ≃6% down to nonlinear scales k = 0.7 h Mpc−1. Finally, our method allows us to generate massive neutrino simulations 10,000 times faster than the traditional methods.

[1]  G. Lewis,et al.  A black box for dark sector physics: predicting dark matter annihilation feedback with conditional GANs , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  F. Villaescusa-Navarro,et al.  Constraining Mν with the bispectrum. Part I. Breaking parameter degeneracies , 2019, Journal of Cosmology and Astroparticle Physics.

[3]  D. Eisenstein,et al.  A Hybrid Deep Learning Approach to Cosmological Constraints from Galaxy Redshift Surveys , 2019, The Astrophysical Journal.

[4]  A. Lokhov,et al.  Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. , 2019, Physical review letters.

[5]  Ana Maria Delgado,et al.  The Quijote Simulations , 2019, The Astrophysical Journal Supplement Series.

[6]  R. B. Barreiro,et al.  Planck 2018 results , 2019, Astronomy & Astrophysics.

[7]  S. Contreras,et al.  How to add massive neutrinos to your ΛCDM simulation – extending cosmology rescaling algorithms , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  David Alonso,et al.  Cosmic voids: a novel probe to shed light on our Universe. , 2019, 1903.05161.

[9]  Wei Chen,et al.  Learning to predict the cosmological structure formation , 2018, Proceedings of the National Academy of Sciences.

[10]  L. Guzzo,et al.  Accurate fitting functions for peculiar velocity spectra in standard and massive-neutrino cosmologies , 2018, Astronomy & Astrophysics.

[11]  C. Carbone,et al.  Massive neutrinos leave fingerprints on cosmic voids , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[13]  S. Ho,et al.  Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses , 2018, Physical Review D.

[14]  Siamak Ravanbakhsh,et al.  Analysis of Cosmic Microwave Background with Deep Learning , 2018, ICLR.

[15]  Thomas Hofmann,et al.  Fast cosmic web simulations with generative adversarial networks , 2018, Computational Astrophysics and Cosmology.

[16]  L. Guzzo,et al.  Cosmological constraints from galaxy clustering in the presence of massive neutrinos , 2017, 1712.02886.

[17]  C. Carbone,et al.  DEMNUni: massive neutrinos and the bispectrum of large scale structures , 2017, 1712.02334.

[18]  Laurence Perreault Levasseur,et al.  Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.

[19]  D. Spergel,et al.  The Imprint of Neutrinos on Clustering in Redshift Space , 2017, The Astrophysical Journal.

[20]  T. Schwetz,et al.  Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity , 2016, Journal of High Energy Physics.

[21]  Arka Banerjee,et al.  Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.

[22]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[23]  S. Ho,et al.  Improvement of cosmological neutrino mass bounds , 2016, 1605.04320.

[24]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[25]  M. Viel,et al.  Voids in massive neutrino cosmologies , 2015, 1506.03088.

[26]  M. Viel,et al.  The effect of massive neutrinos on the BAO peak , 2015, 1505.07477.

[27]  C. Carbone,et al.  DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos , 2015, 1505.07148.

[28]  T. Schwetz,et al.  Updated fit to three neutrino mixing: status of leptonic CP violation , 2014, Journal of High Energy Physics.

[29]  C. A. Wuensche,et al.  A neural-network based estimator to search for primordial non-Gaussianity in Planck CMB maps , 2014, 1409.3876.

[30]  J. Valle,et al.  Neutrino oscillations refitted , 2014, 1405.7540.

[31]  Tejpreet Singh Golan,et al.  Observation of electron neutrino appearance in a muon neutrino beam. , 2013, Physical review letters.

[32]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[33]  Francisco Villaescusa-Navarro,et al.  Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.

[34]  J. Lesgourgues,et al.  Neutrino Mass from Cosmology , 2012, 1212.6154.

[35]  A. Hourlier,et al.  Reactor ν̄e disappearance in the Double Chooz experiment , 2012, 1207.6632.

[36]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[37]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[38]  M. Viel,et al.  Neutrino signatures on the high-transmission regions of the Lyman $\boldsymbol {\alpha }$ forest , 2011, 1106.2543.

[39]  A Godley,et al.  Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam. , 2008, Physical review letters.

[40]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[41]  C. Kraus,et al.  Final results from phase II of the Mainz neutrino mass searchin tritium ${\beta}$ decay , 2004, hep-ex/0412056.

[42]  M. Decowski,et al.  Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. , 2004, Physical review letters.

[43]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[44]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .