Global Stability in Chemostat-Type Equations with Distributed Delays

We consider a chemostat-type model in which a single species feeds on a limiting nutrient supplied at a constant rate. The model incorporates a general nutrient uptake function and two distributed ...

[1]  G. Bischi,et al.  Stability in chemostat equations with delayed nutrient recycling , 1990, Journal of mathematical biology.

[2]  P. Richerson,et al.  Temporal Variation, Spatial Heterogeneity, and Competition for Resources in Plankton Systems: A Theoretical Model , 1985, The American Naturalist.

[3]  Michael B. Usher The golden age of theoretical ecology: 1923–1940. Lecture notes in biomathematics, Vol. 22: Francesco M. Schuda and James R. Ziegler (Editors). Springer Verlag, Berlin - Heidelberg - New York, 1978, xii + 490 pp., illustrated, U.S. $ 21.50, ISBN 3-540-08769-9 , 1981 .

[4]  Yasuhiro Takeuchi,et al.  QUALITATIVE PROPERTIES OF CHEMOSTAT EQUATIONS WITH TIME DELAYS , 1995 .

[5]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[6]  R E Ulanowicz,et al.  Mass and energy flow in closed ecosystems. , 1972, Journal of theoretical biology.

[7]  R. Whittaker Communities and Ecosystems , 1975 .

[8]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[9]  Shigui Ruan,et al.  The effect of delays on stability and persistence in plankton models , 1995 .

[10]  Toshiki Naito,et al.  Functional Differential Equations With Infinite Delay , 1991 .

[11]  G. Bischi,et al.  Effects of time lags on transient characteristics of a nutrient cycling model. , 1992, Mathematical biosciences.

[12]  James R. Ziegler,et al.  The Golden Age of Theoretical Ecology: 1923–1940 , 1978 .

[13]  Xue-Zhong He,et al.  Global stability in chemostat-type plankton models with delayed nutrient recycling , 1998 .

[14]  Rossana Vermiglio,et al.  Stability of some test equations with delay , 1994 .

[15]  John Caperon,et al.  Time Lag in Population Growth Response of Isochrysis Galbana to a Variable Nitrate Environment , 1969 .

[16]  Paul Waltman,et al.  The Theory of the Chemostat , 1995 .

[17]  N. Macdonald Time lags in biological models , 1978 .

[18]  Gail S. K. Wolkowicz,et al.  Competition in the Chemostat: A Distributed Delay Model and Its Global Asymptotic Behavior , 1997, SIAM J. Appl. Math..

[19]  W. Gurney,et al.  Model of material cycling in a closed ecosystem , 1976, Nature.

[20]  William Gurney,et al.  A “strategic” model of material cycling in a closed ecosystem , 1983 .

[21]  T. A. Burton,et al.  Volterra integral and differential equations , 1983 .

[22]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics. , 1978 .