AutoConnect

We present AutoConnect, an automatic method that creates customized, 3D-printable connectors attaching two physical objects together. Users simply position and orient virtual models of the two objects that they want to connect and indicate some auxiliary information such as weight and dimensions. Then, AutoConnect creates several alternative designs that users can choose from for 3D printing. The design of the connector is created by combining two holders, one for each object. We categorize the holders into two types. The first type holds standard objects such as pipes and planes. We utilize a database of parameterized mechanical holders and optimize the holder shape based on the grip strength and material consumption. The second type holds free-form objects. These are procedurally generated shell-gripper designs created based on geometric analysis of the object. We illustrate the use of our method by demonstrating many examples of connectors and practical use cases.

[1]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, SIGGRAPH '06.

[2]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[3]  Randall H. Wilson,et al.  On geometric assembly planning , 1992 .

[4]  Bedrich Benes,et al.  Clever Support: Efficient Support Structure Generation for Digital Fabrication , 2014, Comput. Graph. Forum.

[5]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[6]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[7]  Daniel Cohen-Or,et al.  Approximate pyramidal shape decomposition , 2014, ACM Trans. Graph..

[8]  Daniel Cohen-Or,et al.  Stackabilization , 2012, ACM Trans. Graph..

[9]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[11]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[12]  Daniel Cohen-Or,et al.  Meta-representation of shape families , 2014, ACM Trans. Graph..

[13]  Takeo Igarashi,et al.  SketchChair: an all-in-one chair design system for end users , 2011, Tangible and Embedded Interaction.

[14]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[15]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[16]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[17]  Jessica K. Hodgins,et al.  Generating and ranking diverse multi-character interactions , 2014, ACM Trans. Graph..

[18]  Wojciech Matusik,et al.  Boxelization: folding 3D objects into boxes , 2014, ACM Trans. Graph..

[19]  N. Mitra,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, SIGGRAPH 2009.

[20]  Pat Hanrahan,et al.  Designing effective step-by-step assembly instructions , 2003, ACM Trans. Graph..

[21]  Leonidas J. Guibas,et al.  Shape segmentation using local slippage analysis , 2004, SGP '04.

[22]  Ken-ichi Anjyo,et al.  Scattered data interpolation for computer graphics , 2014, SIGGRAPH '14.

[23]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[24]  Nobuyuki Umetani,et al.  Cross-sectional structural analysis for 3D printing optimization , 2013, SIGGRAPH ASIA Technical Briefs.

[25]  Kun Zhou,et al.  An asymptotic numerical method for inverse elastic shape design , 2014, ACM Trans. Graph..

[26]  H. Hirukawa,et al.  Automatic determination of possible velocity and applicable force of frictionless objects in contact from a geometric model , 1994, IEEE Trans. Robotics Autom..

[27]  Baining Guo,et al.  Motion-guided mechanical toy modeling , 2012, ACM Trans. Graph..

[28]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Daniel Cohen-Or,et al.  Build-to-last , 2014, ACM Trans. Graph..

[30]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[31]  Olga Sorkine-Hornung,et al.  Spin-it , 2014, ACM Trans. Graph..

[32]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[33]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[34]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[35]  Wojciech Matusik,et al.  Design and fabrication of materials with desired deformation behavior , 2010, SIGGRAPH 2010.

[36]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[37]  Takeo Igarashi,et al.  Pteromys: interactive design and optimization of free-formed free-flight model airplanes , 2014, ACM Trans. Graph..

[38]  Wilmot Li,et al.  Creating works-like prototypes of mechanical objects , 2014, ACM Trans. Graph..

[39]  Ligang Liu,et al.  Cost-effective printing of 3D objects with skin-frame structures , 2013, ACM Trans. Graph..

[40]  M. V. D. Panne,et al.  Joint-aware manipulation of deformable models , 2009, SIGGRAPH 2009.

[41]  Marc Levoy,et al.  Geometrically stable sampling for the ICP algorithm , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[42]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[43]  Wojciech Matusik,et al.  Design and fabrication by example , 2014, ACM Trans. Graph..