Stochastic algorithms for solving Smolouchovsky coagulation equation and applications to aerosol growth simulation.

Stochastic algorithms for solving Smolouchovsky equation governing the coagulation processes are constructed. The derivation of the method is based on the interrelation between the Boltzmann type nonlinear equations and the Kolmogorov linear equation for the Markov processes. The justification is proposed under the molecule chaos hypothesis. We discuss three different stochastic algorithms: the Bird, Nanbu and a weight algorithms. To carry out a carefull numerical test of the methods proposed, we constructed a deterministic finite element method. A series of calculations confirm the efficiency of the stochastic algorithms. We solved also some applied problems related to the aerosol formation processes.

[1]  Graeme A. Bird,et al.  Direct Simulation and the Boltzmann Equation , 1970 .

[2]  Reuel Shinnar,et al.  The Extent of Correlations in a Stochastic Coalescence Process , 1974 .

[3]  D. Thomson On the relative dispersion of two particles in homogeneous stationary turbulence and the implications for the size of concentration fluctuations at large times , 1986 .

[4]  CoalescenceDavid J. Aldous Stochastic Coalescence , 1998 .

[5]  P. Mcmurry New particle formation in the presence of an aerosol: Rates, time scales, and sub-0.01 μm size distributions , 1983 .

[6]  S. V. Rogasinsky,et al.  Analysis of numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics , 1988 .

[7]  Some condensation processes of McKean type , 1971 .

[8]  Sotiris E. Pratsinis,et al.  A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime , 1990 .

[9]  Frans T. M. Nieuwstadt,et al.  Random walk models for particle displacements in inhomogeneous unsteady turbulent flows , 1985 .

[10]  Kurt Liffman,et al.  A direct simulation Monte-Carlo method for cluster coagulation , 1992 .

[11]  John H. Seinfeld,et al.  The general dynamic equation for aerosols. Theory and application to aerosol formation and growth , 1979 .

[12]  P. Mcmurry,et al.  Nucleation and Growth of Aerosol in Chemically Reacting Systems: A Theoretical Study of the Near-Collision-Controlled Regime , 1989 .

[13]  H. Neunzert,et al.  Particle Methods for the Boltzmann Equation , 1995, Acta Numerica.

[14]  E. J. List,et al.  Monte Carlo simulation of coagulation in discrete particle-size distributions. Part 1. Brownian motion and fluid shearing , 1984, Journal of Fluid Mechanics.

[15]  H. Babovsky,et al.  A convergence proof for Nanbu's Boltzmann simulation scheme , 1989 .

[16]  S. Friedlander,et al.  New particle formation in the presence of an aerosol , 1979 .

[17]  J. Seinfeld Atmospheric Chemistry and Physics of Air Pollution , 1986 .

[18]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .

[19]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[20]  Karl K. Sabelfeld Monte Carlo Methods in Boundary Value Problems. , 1991 .

[21]  R. Shinnar,et al.  PARTICULATE METHODS IN PROBABILITY SYSTEMS , 1969 .

[22]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .

[23]  A. A Lushnikov,et al.  Evolution of coagulating systems , 1973 .

[24]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[25]  Michael Warshaw,et al.  Cloud Droplet Coalescence: Statistical Foundations and a One-Dimensional Sedimentation Model1 , 1967 .

[26]  J.,et al.  Monte Carlo simulation of coagulation in discrete particle-size distributions. Part 2. Interparticle forces and the quasi-stationary equilibrium hypothesis , 1984, Journal of Fluid Mechanics.

[27]  C. Cercignani,et al.  Interaction of evaporating and condensing particles in the free‐molecular regime , 1995 .

[28]  J. Brock New Aspects of Aerosol Growth Processes , 1982 .

[29]  Aerosol Dynamics in Atmospheric Aromatic Photooxidation , 1989 .

[30]  Daniel T. Gillespie,et al.  The Stochastic Coalescence Model for Cloud Droplet Growth. , 1972 .

[31]  E. A. Novikov Two‐particle description of turbulence, Markov property, and intermittency , 1989 .

[32]  Karl K. Sabelfeld,et al.  Stochastic Lagrangian Models of Relative Dispersion of a Pair of Fluid Particles in Turbulent Flows , 1995, Monte Carlo Methods Appl..

[33]  J. Seinfeld,et al.  Numerical solution of the dynamic equation for particulate systems , 1978 .

[34]  J. Seinfeld,et al.  Homogeneous Nucleation by Continuous Mixing of High Temperature Vapor with Room Temperature Gas , 1987 .

[35]  P. Saffman,et al.  On the collision of drops in turbulent clouds , 1956, Journal of Fluid Mechanics.