Flexible transformation plasmonics using graphene.

The flexible control of surface plasmon polaritons (SPPs) is important and intriguing due to its wide application in novel plasmonic devices. Transformation optics (TO) offers the capability either to confine the SPP propagation on rigid curved/uneven surfaces, or to control the flow of SPPs on planar surfaces. However, TO has not permitted us to confine, manipulate, and control SPP waves on flexible curved surfaces. Here, we propose to confine and freely control flexible SPPs using TO and graphene. We show that SPP waves can be naturally confined and propagate on curved or uneven graphene surfaces with little bending and radiation losses, and the confined SPPs are further manipulated and controlled using TO. Flexible plasmonic devices are presented, including the bending waveguides, wave splitter, and Luneburg lens on curved surfaces. Together with the intrinsic flexibility, graphene can be served as a good platform for flexible transformation plasmonics.

[1]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[2]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[3]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[4]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[5]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[6]  D. R. Andersen Graphene-based long-wave infrared TM surface plasmon modulator , 2010 .

[7]  D. R. Smith,et al.  Transformation Optics and Subwavelength Control of Light , 2012, Science.

[8]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[9]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[10]  Z. Dong,et al.  Beam-scanning planar lens based on graphene , 2012 .

[11]  D. Genov,et al.  Mimicking celestial mechanics in metamaterials , 2009 .

[12]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[13]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[14]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[15]  Thomas F. Krauss,et al.  Flexible metamaterials at visible wavelengths , 2010 .

[16]  M. Dokmeci,et al.  Flexible Plasmonics on Unconventional and Nonplanar Substrates , 2011, Advanced materials.

[17]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[18]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[19]  T. Tyc,et al.  An omnidirectional retroreflector based on the transmutation of dielectric singularities. , 2009, Nature materials.

[20]  S. Guenneau,et al.  Transformational plasmonics: cloak, concentrator and rotator for SPPs. , 2010, Optics express.

[21]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[22]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[23]  T. Cui,et al.  Efficient manipulation of surface plasmon polariton waves in graphene , 2012 .

[24]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[25]  T. Cui,et al.  Anisotropic metamaterial devices , 2009 .

[26]  F. García-Vidal,et al.  Moulding the flow of surface plasmons using conformal and quasiconformal mappings , 2011, 1102.3102.

[27]  M. Kafesaki,et al.  A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics , 2012, 1210.0640.

[28]  David R. Smith,et al.  Electromagnetic Design With Transformation Optics , 2011, Proceedings of the IEEE.

[29]  Takumi Sannomiya,et al.  High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. , 2012, ACS nano.

[30]  Wei Chen,et al.  Surface transfer p-type doping of epitaxial graphene. , 2007, Journal of the American Chemical Society.

[31]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[32]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[33]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[34]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[35]  Keisuke Hasegawa,et al.  Curvature-induced radiation of surface plasmon polaritons propagating around bends , 2007 .

[36]  S. Guenneau,et al.  Transformation plasmonics , 2012 .