Abstract We show that a graph admits a topology on its node set which is compatible with the usual connectivity of undirected graphs if, and only if, it is a comparability graph. Then, we give a similar condition for the weak connectivity of oriented graphs and show there is no topology which is compatible with the strong connectivity of oriented graphs. We also give a necessary and sufficient condition for a topology on a discrete set to be ‘representable’ by an undirected graph. fr|Nous montrons qu'un graphe admet une topologie sur l'ensemble de ses sommets compatible avec la connexite usuelle des graphes non-orientes si, et seulement si c'est un graphe de comparabilite; puis nous donnons une condition similaire pour la connexite faible des graphes orientes et montrons la non-existence d'une topologie compatible avec la connexite forte. Nous donnons egalement une condition necessaire et suffisante pour qu'une topologie sur un ensemble discret soit ‘representable’ par un graphe non-oriente.
[1]
Jean-Marc Chassery,et al.
Connectivity and consecutivity in digital pictures
,
1979
.
[2]
C. Berge.
Graphes et hypergraphes
,
1970
.
[3]
Nicolas Bourbaki,et al.
Elements de Mathematiques
,
1954,
The Mathematical Gazette.
[4]
R. Möhring.
Algorithmic graph theory and perfect graphs
,
1986
.
[5]
Longin Jan Latecki,et al.
Digital Topology
,
1994
.
[6]
Bruce A. Reed,et al.
P4-comparability graphs
,
1989,
Discret. Math..
[7]
E. Dubois,et al.
Digital picture processing
,
1985,
Proceedings of the IEEE.
[8]
R. Möhring.
Algorithmic Aspects of Comparability Graphs and Interval Graphs
,
1985
.