Diverse types of ganglion cell photoreceptors in the mammalian retina

Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field.

[1]  Satchidananda Panda,et al.  Circadian rhythms from flies to human , 2002, Nature.

[2]  K. Yau,et al.  Photon capture and signalling by melanopsin retinal ganglion cells , 2008, Nature.

[3]  Clifford B. Saper,et al.  A neural mechanism for exacerbation of headache by light , 2010, Nature Neuroscience.

[4]  K. Yau,et al.  Phototransduction Motifs and Variations , 2009, Cell.

[5]  G. A. Robinson,et al.  Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft , 2004, Vision Research.

[6]  Jessica D. Kaufman,et al.  Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus , 2003, Visual Neuroscience.

[7]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[8]  Robert J. Lucas,et al.  Calcium Imaging Reveals a Network of Intrinsically Light-Sensitive Inner-Retinal Neurons , 2003, Current Biology.

[9]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[10]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[11]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[12]  Glen Jeffery,et al.  Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer , 2005, Visual Neuroscience.

[13]  L. Birnbaumer,et al.  Intrinsic phototransduction persists in melanopsin‐expressing ganglion cells lacking diacylglycerol‐sensitive TRPC subunits , 2011, The European journal of neuroscience.

[14]  J. Nathans,et al.  POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. F. Johnson,et al.  Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract , 1988, Brain Research.

[16]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[17]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  V. Carelli,et al.  Melanopsin-expressing retinal ganglion cells: implications for human diseases , 2011, Vision Research.

[19]  C. Allen,et al.  The light‐activated signaling pathway in SCN‐projecting rat retinal ganglion cells , 2006, The European journal of neuroscience.

[20]  T. Badea,et al.  Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs , 2011, Nature.

[21]  Stuart N. Peirson,et al.  Melanopsin: an exciting photopigment , 2008, Trends in Neurosciences.

[22]  Satchidananda Panda,et al.  Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting , 2002, Science.

[23]  Jun Lu,et al.  A Broad Role for Melanopsin in Nonvisual Photoreception , 2003, The Journal of Neuroscience.

[24]  Samer Hattar,et al.  Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions , 2011, Trends in Neurosciences.

[25]  S. Halford,et al.  Differential Expression of Two Distinct Functional Isoforms of Melanopsin (Opn4) in the Mammalian Retina , 2009, The Journal of Neuroscience.

[26]  Kwoon Y. Wong,et al.  Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells , 2009, The Journal of comparative neurology.

[27]  A. Hendrickson Electron microscopic distribution of axoplasmic transport , 1972, The Journal of comparative neurology.

[28]  J. Pérez-León,et al.  Synaptic inputs to retinal ganglion cells that set the circadian clock , 2006, The European journal of neuroscience.

[29]  Kwoon Y. Wong,et al.  Synaptic influences on rat ganglion‐cell photoreceptors , 2007, The Journal of physiology.

[30]  K. Tsuji,et al.  Entrainment of the circadian activity rhythm to the light cycle: Effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse , 1980, Physiology & Behavior.

[31]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  Clyde E. Keeler,et al.  IRIS MOVEMENTS IN BLIND MICE , 1927 .

[33]  T. Lamb,et al.  Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. , 2006, Investigative ophthalmology & visual science.

[34]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  M. Mochizuki,et al.  FOXP3+ CD25+ T Cells Induced by Ocular Pigment Epihelium Display Regulatory Phenotype and Aquire Regulatory Functions , 2006 .

[36]  L. S. Phillips,et al.  Melatonin Synthesis in thePineal Gland: Control by Light , 1963, Science.

[37]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[38]  D. Clapham,et al.  Melanopsin Signaling in Mammalian Iris and Retina Hhs Public Access Intrinsic Plr in Mouse and Other Mammals Involvement of Melanopsin in Mammalian Intrinsic Plr Phototransduction Mechanism Underlying Intrinsic Plr Phototransduction Pathway in Iprgcs Functional Contribution of Intrinsic Plr in Mouse , 2022 .

[39]  Howard M. Cooper,et al.  Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo , 2007, Journal of biological rhythms.

[40]  Satchidananda Panda,et al.  Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System , 2010, PLoS biology.

[41]  R. Moore,et al.  The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells , 1995, The Journal of comparative neurology.

[42]  Erin L. McDearmon,et al.  The genetics of mammalian circadian order and disorder: implications for physiology and disease , 2008, Nature Reviews Genetics.

[43]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  K. Yau,et al.  Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina , 2010, The Journal of comparative neurology.

[45]  Satchidananda Panda,et al.  The emerging roles of melanopsin in behavioral adaptation to light. , 2010, Trends in molecular medicine.

[46]  Kwoon Y. Wong,et al.  Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons , 2008, Proceedings of the National Academy of Sciences.

[47]  Masahito Yamagata,et al.  Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections , 2011, The Journal of Neuroscience.

[48]  C. Allen,et al.  Intrinsic light responses of retinal ganglion cells projecting to the circadian system , 2003, The European journal of neuroscience.

[49]  R. Moore,et al.  A retinohypothalamic projection in the rat , 1972, The Journal of comparative neurology.

[50]  U. Dräger,et al.  Origins of crossed and uncrossed retinal projections in pigmented and albino mice , 1980, The Journal of comparative neurology.

[51]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[52]  Satchidananda Panda,et al.  Illumination of the Melanopsin Signaling Pathway , 2005, Science.

[53]  S. Reppert,et al.  Coordination of circadian timing in mammals , 2002, Nature.

[54]  Ulrike Grünert,et al.  Characterization and synaptic connectivity of melanopsin‐containing ganglion cells in the primate retina , 2007, The European journal of neuroscience.

[55]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[56]  Kwoon Y. Wong,et al.  Induction of photosensitivity by heterologous expression of melanopsin , 2005, Nature.

[57]  J. Hannibal,et al.  Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. , 2007, Investigative ophthalmology & visual science.

[58]  S. Halford,et al.  Functional diversity of melanopsins and their global expression in the teleost retina , 2011, Cellular and Molecular Life Sciences.

[59]  S. Peirson,et al.  Profound defects in pupillary responses to light in TRPM‐channel null mice: a role for TRPM channels in non‐image‐forming photoreception , 2012, The European journal of neuroscience.

[60]  R. Foster,et al.  2-Aminoethoxydiphenylborane Is an Acute Inhibitor of Directly Photosensitive Retinal Ganglion Cell Activity In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[61]  J. Cook,et al.  Retinal mosaics: new insights into an old concept , 2000, Trends in Neurosciences.

[62]  D. Berson,et al.  Morphology and mosaics of melanopsin‐expressing retinal ganglion cell types in mice , 2010, The Journal of comparative neurology.

[63]  A. Borbély Effects of light on sleep and activity rhythms , 1978, Progress in Neurobiology.

[64]  Kenichiro Taniguchi,et al.  Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. , 2008, Journal of neurophysiology.

[65]  S. Haverkamp,et al.  Intrinsically photosensitive ganglion cells of the primate retina express distinct combinations of inhibitory neurotransmitter receptors , 2011, Neuroscience.

[66]  Robert J. Lucas,et al.  Characterization of an ocular photopigment capable of driving pupillary constriction in mice , 2001, Nature Neuroscience.

[67]  G. E. Pickard,et al.  Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses , 2003, The Journal of comparative neurology.

[68]  I. Zucker,et al.  Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight , 1981 .

[69]  C. Keeler The Inheritance of a Retinal Abnormality in White Mice. , 1924, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Massey,et al.  ON Inputs to the OFF Layer: Bipolar Cells That Break the Stratification Rules of the Retina , 2009, The Journal of Neuroscience.

[71]  Kwoon Y. Wong,et al.  Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. , 2008, Journal of neurophysiology.

[72]  N. Oshima Direct reception of light by chromatophores of lower vertebrates. , 2001, Pigment cell research.

[73]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[74]  Hisao Tsukamoto,et al.  Cephalochordate Melanopsin: Evolutionary Linkage between Invertebrate Visual Cells and Vertebrate Photosensitive Retinal Ganglion Cells , 2005, Current Biology.

[75]  P. Kofuji,et al.  Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[76]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[77]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[78]  Morven A. Cameron,et al.  Visual Responses in Mice Lacking Critical Components of All Known Retinal Phototransduction Cascades , 2010, PloS one.

[79]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[80]  R. Masland Cell populations of the retina: the Proctor lecture. , 2011, Investigative ophthalmology & visual science.

[81]  T. Holy,et al.  Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[82]  G. E. Pickard,et al.  Direct retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique , 1981, The Journal of comparative neurology.

[83]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[84]  Hiroshi Momiji,et al.  Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance , 2010, Neuron.

[85]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[86]  B. O'Brien,et al.  Intrinsic physiological properties of cat retinal ganglion cells , 2002, The Journal of physiology.

[87]  R. Lucas,et al.  Melanopsin and inner retinal photoreception , 2009, Cellular and Molecular Life Sciences.

[88]  G. E. Pickard,et al.  Light-Evoked Calcium Responses of Isolated Melanopsin-Expressing Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[89]  J. Hannibal Roles of PACAP-containing retinal ganglion cells in circadian timing. , 2006, International review of cytology.

[90]  Satchidananda Panda,et al.  Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses , 2008, PloS one.

[91]  P. Fuller,et al.  Immunotoxin‐induced ablation of melanopsin retinal ganglion cells in a non‐murine mammalian model , 2009, The Journal of comparative neurology.

[92]  R. Foster,et al.  Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[93]  S. Hattar,et al.  Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation , 2008, Proceedings of the National Academy of Sciences.

[94]  S. Hattar,et al.  Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. , 2007, Cold Spring Harbor symposia on quantitative biology.

[95]  P. J. Larsen,et al.  Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. , 2004, Investigative ophthalmology & visual science.

[96]  P. Kofuji,et al.  Differential Cone Pathway Influence on Intrinsically Photosensitive Retinal Ganglion Cell Subtypes , 2010, The Journal of Neuroscience.

[97]  J. Bellingham,et al.  Addition of human melanopsin renders mammalian cells photoresponsive , 2005, Nature.

[98]  Hiroshi Ueda,et al.  TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. , 2010, Cell calcium.

[99]  Vladimir J. Kefalov,et al.  The Cone-specific visual cycle , 2011, Progress in Retinal and Eye Research.

[100]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells. , 2010, Physiological reviews.

[101]  J. Rizzo,et al.  Suppression of melatonin secretion in some blind patients by exposure to bright light. , 1995, The New England journal of medicine.

[102]  T. Badea,et al.  Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision , 2008, Nature.

[103]  C. Saper,et al.  Hypothalamic regulation of sleep and circadian rhythms , 2005, Nature.

[104]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[105]  S. Peirson,et al.  Melanopsin: Another Way of Signaling Light , 2006, Neuron.

[106]  N. K. Dhingra,et al.  Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse , 2012, The Journal of comparative neurology.

[107]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[108]  Satchidananda Panda,et al.  Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice , 2003, Science.

[109]  L. P. Morin,et al.  Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: Bifurcation and melanopsin immunoreactivity , 2003, The Journal of comparative neurology.

[110]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[111]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[112]  E. L. Chaffee,et al.  Normal and "Rodless" Retinae of the House Mouse with Respect to the Electromotive Force Generated through Stimulation by Light. , 1928, Proceedings of the National Academy of Sciences of the United States of America.

[113]  R. V. Van Gelder,et al.  Absence of Long-Wavelength Photic Potentiation of Murine Intrinsically Photosensitive Retinal Ganglion Cell Firing In Vitro , 2008, Journal of biological rhythms.

[114]  Uwe Redlin,et al.  NEURAL BASIS AND BIOLOGICAL FUNCTION OF MASKING BY LIGHT IN MAMMALS: SUPPRESSION OF MELATONIN AND LOCOMOTOR ACTIVITY , 2001, Chronobiology international.

[115]  G. E. Pickard,et al.  Intrinsically photosensitive retinal ganglion cells. , 2012, Reviews of physiology, biochemistry and pharmacology.

[116]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[117]  D A Newsome,et al.  Light suppresses melatonin secretion in humans. , 1980, Science.

[118]  P. Kofuji,et al.  Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse , 2011, The Journal of comparative neurology.

[119]  M. Menaker,et al.  Circadian photoreception in the retinally degenerate mouse (rd/rd) , 1991, Journal of Comparative Physiology A.

[120]  T. Lamb,et al.  Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup , 2007, Nature Reviews Neuroscience.

[121]  J. Hannibal,et al.  The Photopigment Melanopsin Is Exclusively Present in Pituitary Adenylate Cyclase-Activating Polypeptide-Containing Retinal Ganglion Cells of the Retinohypothalamic Tract , 2002, The Journal of Neuroscience.

[122]  Bruce F O'Hara,et al.  Role of Melanopsin in Circadian Responses to Light , 2002, Science.

[123]  S. Hochstein,et al.  Transduction in invertebrate photoreceptors: role of pigment bistability. , 1983, Physiological reviews.

[124]  J. Takahashi,et al.  Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). , 1991, The Journal of physiology.

[125]  L. P. Morin,et al.  Targeted Destruction of Photosensitive Retinal Ganglion Cells with a Saporin Conjugate Alters the Effects of Light on Mouse Circadian Rhythms , 2008, PloS one.

[126]  G. E. Pickard,et al.  Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus , 2008, The European journal of neuroscience.

[127]  D. Berson,et al.  Hyperpolarization-Activated Current (I h) in Ganglion-Cell Photoreceptors , 2010, PloS one.

[128]  L. Chalupa,et al.  Morphological properties of mouse retinal ganglion cells , 2006, Neuroscience.