Total Positivity from the Exponential Riordan Arrays

Log-concavity and almost log-convexity of the cycle index polynomials were proved by Bender and Canfield [J. Combin. Theory Ser. A 74 (1996)]. Schirmacher [J. Combin. Theory Ser. A 85 (1999)] extended them to q-log-concavity and almost q-log-convexity. Motivated by these, we consider the stronger properties total positivity from the Toeplitz matrix and Hankel matrix. By using exponential Riordan array methods, we give some criteria for total positivity of the triangular matrix of coefficients of the generalized cycle index polynomials, the Toeplitz matrix and Hankel matrix of the polynomial sequence in terms of the exponential formula, the logarithmic formula and the fractional formula, respectively. Finally, we apply our criteria to some triangular arrays satisfying some recurrence relations, including Bessel triangles of two kinds and their generalizations, the Lah triangle and its generalization, the idempotent triangle and some triangles related to binomial coefficients, rook polynomials and Laguerre polynomials. We not only get total positivity of these lower-triangles, and q-Stieltjes moment properties and 3-q-log-convexity of their row-generating functions, but also prove that their triangular convolutions preserve Stieltjes moment property. In particular, we solve a conjecture of Sokal on q-Stieltjes moment property of rook polynomials. MSC: 05A20; 05A15; 11B83; 15B36; 44A60

[1]  S. B. Nandi,et al.  ON ASSOCIATED AND GENERALIZED LAH NUMBERS AND APPLICATIONS TO DISCRETE DISTRIBUTIONS , 1985 .

[2]  P. Barry Riordan arrays, orthogonal polynomials as moments, and Hankel transforms , 2011, 1102.0921.

[3]  F. T. Howard Degenerate weighted Stirling numbers , 1985, Discret. Math..

[4]  I. M. Sheffer,et al.  Some properties of polynomial sets of type zero , 1939 .

[5]  Clifford Smyth A Probabilistic Characterization of the Dominance Order on Partitions , 2018, Order.

[6]  Bao-Xuan Zhu,et al.  Positivity of Iterated Sequences of Polynomials , 2018, SIAM J. Discret. Math..

[7]  S. L. Soni A note on the bessel polynomials , 1970 .

[8]  J. H. Redfield,et al.  The Theory of Group-Reduced Distributions , 1927 .

[9]  Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties , 2001, math/0112024.

[10]  Pietro Mongelli,et al.  Total positivity properties of Jacobi-Stirling numbers , 2012, Adv. Appl. Math..

[11]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .

[12]  Yi Wang,et al.  Log-convex and Stieltjes moment sequences , 2016, Adv. Appl. Math..

[13]  Bao-Xuan Zhu Positivity and continued fractions from the binomial transformation , 2019, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[15]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[16]  Yaming Yu,et al.  Confirming two conjectures of Su and Wang on binomial coefficients , 2009, Adv. Appl. Math..

[17]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[18]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[19]  Bao-Xuan Zhu Hankel-total positivity of some sequences , 2019, Proceedings of the American Mathematical Society.

[20]  Lili Mu,et al.  On the Total Positivity of Delannoy-Like Triangles , 2017, J. Integer Seq..

[21]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.

[22]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[23]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[24]  Bao-Xuan Zhu,et al.  Stieltjes moment properties and continued fractions from combinatorial triangles , 2020, Adv. Appl. Math..

[25]  Xi Chen,et al.  Total positivity of Riordan arrays , 2015, Eur. J. Comb..

[26]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[27]  Bao-Xuan Zhu,et al.  A generalized Eulerian triangle from staircase tableaux and tree-like tableaux , 2020, J. Comb. Theory, Ser. A.

[28]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.

[29]  Gian-Carlo Rota,et al.  On the foundations of combinatorial theory. VIII. Finite operator calculus , 1973 .

[30]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[31]  Brigitte Maier,et al.  Totally Positive Matrices , 2016 .

[32]  Emil Grosswald,et al.  Addendum to: “On some algebraic properties of the Bessel polynomials” , 1951 .

[33]  Qiongqiong Pan,et al.  On Total Positivity of Catalan-Stieltjes Matrices , 2016, Electron. J. Comb..

[34]  Bjorn G. Hansen,et al.  On Log-Concave and Log-Convex Infinitely Divisible Sequences and Densities , 1988 .

[35]  Steven Roman The Umbral Calculus , 1984 .

[36]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[37]  Lynne M. Butler,et al.  The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.

[38]  Pierre Leroux,et al.  Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.

[39]  Christian Krattenthaler,et al.  On theq-log-concavity of Gaussian binomial coefficients , 1989 .

[40]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .

[41]  Hua Sun,et al.  Linear Transformations Preserving the Strong $q$-log-convexity of Polynomials , 2015, Electron. J. Comb..

[42]  G. Rota,et al.  Finite operator calculus , 1975 .

[43]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[44]  Yi Wang,et al.  Notes on the total positivity of Riordan arrays , 2019, Linear Algebra and its Applications.

[45]  Edward A. Bender,et al.  Log-Concavity and Related Properties of the Cycle Index Polynomials , 1996, J. Comb. Theory, Ser. A.

[46]  A. Sokal,et al.  Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity , 2018, Memoirs of the American Mathematical Society.

[47]  Paul Nevai A new class of orthogonal polynomials , 1984 .

[48]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[49]  F. Steutel,et al.  On moment sequences and infinitely divisible sequences , 1988 .

[50]  Yi Wang,et al.  Total positivity of Narayana matrices , 2017, Discret. Math..

[51]  Emeric Deutsch,et al.  Production Matrices and Riordan Arrays , 2007, math/0702638.

[52]  Petter Brändén,et al.  On linear transformations preserving the Polya frequency property , 2004 .

[53]  Taylor expansions of analytic functions related to (1 + z)x − 1 , 1988 .

[54]  Ernesto Schirmacher,et al.  Log-Concavity and the Exponential Formula , 1999, J. Comb. Theory, Ser. A.

[55]  Alan D. Sokal,et al.  Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions , 2019, Eur. J. Comb..

[56]  On sufficient conditions for the total positivity and for the multiple positivity of matrices , 2005, math/0504183.

[57]  Xi Chen,et al.  Total positivity of recursive matrices , 2015, 1601.05645.

[58]  J. F. Steffensen The poweroid, an extension of the mathematical notion of power , 1941 .

[59]  Thomas Mikosch,et al.  Non-Life Insurance Mathematics: An Introduction with the Poisson Process , 2006 .

[60]  Yi Wang,et al.  On Unimodality Problems in Pascal's Triangle , 2008, Electron. J. Comb..

[61]  Bao-Xuan Zhu,et al.  Q-log-convexity from Linear Transformations and Polynomials with Only Real Zeros , 2016, Eur. J. Comb..