Anisotropic Modeling of Granular Bases in Flexible Pavements

A new cross-anisotropic model is proposed to predict the performance of granular bases in flexible pavements. A cross-anisotropic representation has different material properties (i.e., elastic modulus and Poisson’s ratio) assigned in the horizontal and vertical directions. Repeated-load triaxial tests with vertical and lateral deformation measurements can be used to establish these anisotropic properties. Simple stress-dependent granular material models, obtained from analysis of the laboratory test data, are used in a nonlinear finite element program, named GT-PAVE, to predict pavement responses. The horizontal and shear stiffnesses are typically found to be less than the vertical. The nonlinear anisotropic approach is shown to account effectively for the dilative behavior observed under the wheel load and the effects of compaction-induced residual stresses. The main advantage of using a cross-anisotropic model in the base is the drastic reduction or elimination of significant tensile stresses generally predicted by isotropic linear elastic layered programs.

[1]  Jacob Uzan,et al.  Resilient characterization of pavement materials , 1992 .

[2]  W Heukelom,et al.  DYNAMIC TESTING AS A MEANS OF CONTROLLING PAVEMENTS DURING AND AFTER CONSTRUCTION , 1962 .

[3]  Miloud El Hannani Modelisation et simulation numerique des chaussees souples , 1991 .

[4]  M Karasahin,et al.  APPLICABILITY OF RESILIENT CONSTITUTIVE MODELS OF GRANULAR MATERIAL FOR UNBOUND BASE LAYERS , 1993 .

[5]  J. Z. Zhu,et al.  The finite element method , 1977 .

[6]  C L Monismith,et al.  FACTORS INFLUENCING THE RESILIENT RESPONSE OF GRANULAR MATERIALS , 1971 .

[7]  Erol Tutumluer,et al.  Inverted flexible pavement response and performance , 1995 .

[8]  E. T. Selig Tensile zone effects on performance of layered systems , 1987 .

[9]  I. K. Lee,et al.  Response of granular soil along constant stress increment ratio path. , 1990 .

[10]  H. Borowicka,et al.  Die Druckausbreitung im Halbraum bei linear zunehmendem Elastizitätsmodul , 1943 .

[11]  J. J. Allen,et al.  RESILIENT RESPONSE OF GRANULAR MATERIALS SUBJECTED TO TIME-DEPENDENT LATERAL STRESSES , 1974 .

[12]  Aim Claessen,et al.  ASPHALT PAVEMENT DESIGN--THE SHELL METHOD , 1977 .

[13]  Jacob Uzan,et al.  CHARACTERIZATION OF GRANULAR MATERIAL , 1985 .

[14]  Erol Tutumluer Predicting behavior of flexible pavements with granular bases , 1995 .

[15]  S. Brown,et al.  ANALYSIS OF PAVEMENTS WITH GRANULAR BASES , 1981 .

[16]  D. J. Pickering ANISOTROPIC ELASTIC PARAMETERS FOR SOIL , 1970 .

[17]  Marshall R Thompson,et al.  ILLI-PAVE-BASED RESPONSE ALGORITHMS FOR DESIGN OF CONVENTIONAL FLEXIBLE PAVEMENTS , 1985 .

[18]  L. Barden Stresses and Displacements in a Cross-Anisotropic Soil , 1963 .

[19]  S. F. Brown,et al.  AGGREGATE BASE REINFORCEMENT OF SURFACED PAVEMENTS , 1989 .