PredMaX: Predictive maintenance with explainable deep convolutional autoencoders

[1]  G. D. Fabritiis,et al.  PlayMolecule Glimpse: Understanding Protein–Ligand Property Predictions with Interpretable Neural Networks , 2022, J. Chem. Inf. Model..

[2]  Jinde Zheng,et al.  Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis , 2022, Adv. Eng. Informatics.

[3]  Grigorios Tsoumakas,et al.  VisioRed: A Visualisation Tool for Interpretable Predictive Maintenance , 2021, IJCAI.

[4]  Hongkai Jiang,et al.  Rolling bearing fault diagnosis using optimal ensemble deep transfer network , 2020, Knowl. Based Syst..

[5]  Rodrigo da Rosa Righi,et al.  Predictive maintenance in the Industry 4.0: A systematic literature review , 2020, Comput. Ind. Eng..

[6]  Vikram Krishnamurthy,et al.  Explainable AI Framework for Imaging-Based Predictive Maintenance for Automotive Applications and Beyond , 2020 .

[7]  Yang Yu,et al.  An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE , 2020, Adv. Eng. Informatics.

[8]  Stephan Matzka,et al.  Explainable Artificial Intelligence for Predictive Maintenance Applications , 2020, 2020 Third International Conference on Artificial Intelligence for Industries (AI4I).

[9]  Selver Softic,et al.  Explainable AI in Manufacturing: A Predictive Maintenance Case Study , 2020, APMS.

[10]  Sandeep Verma,et al.  Identifying NOx Sensor Failure for Predictive Maintenance of Diesel Engines using Explainable AI , 2020 .

[11]  Marcel van Gerven,et al.  Explainable Deep Learning: A Field Guide for the Uninitiated , 2020, J. Artif. Intell. Res..

[12]  Le Li,et al.  Remaining useful life prediction via a variational autoencoder and a time‐window‐based sequence neural network , 2020, Qual. Reliab. Eng. Int..

[13]  Imme Ebert-Uphoff,et al.  Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability , 2019, Journal of Advances in Modeling Earth Systems.

[14]  Thyago P. Carvalho,et al.  A systematic literature review of machine learning methods applied to predictive maintenance , 2019, Comput. Ind. Eng..

[15]  Xianghua Xie,et al.  TimeCluster: dimension reduction applied to temporal data for visual analytics , 2019, The Visual Computer.

[16]  Federico Marini,et al.  Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis , 2018, Front. Chem..

[17]  Tiedo Tinga,et al.  Automated Failure Diagnosis in Aviation Maintenance Using eXplainable Artificial Intelligence (XAI) , 2018 .

[18]  Teng Li,et al.  Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder , 2017 .

[19]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[20]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[21]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[22]  Zhihua Zhang,et al.  Support Matrix Machines , 2015, ICML.

[23]  Navdeep Jaitly,et al.  Pointer Networks , 2015, NIPS.

[24]  Józef Jonak,et al.  Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform , 2015, Appl. Soft Comput..

[25]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[26]  Arturo Garcia-Perez,et al.  Reconfigurable Monitoring System for Time-Frequency Analysis on Industrial Equipment Through STFT and DWT , 2013, IEEE Transactions on Industrial Informatics.

[27]  Jay Lee,et al.  Methodology and Framework for Predicting Helicopter Rolling Element Bearing Failure , 2012, IEEE Transactions on Reliability.

[28]  H. W. Ngan,et al.  Detection of Motor Bearing Outer Raceway Defect by Wavelet Packet Transformed Motor Current Signature Analysis , 2010, IEEE Transactions on Instrumentation and Measurement.

[29]  V. Makis,et al.  Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models , 2007 .

[30]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[31]  Dale E. Seborg,et al.  Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis , 2005 .

[32]  S. Joe Qin,et al.  Multivariate process monitoring and fault diagnosis by multi-scale PCA , 2002 .

[33]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[34]  Daniel R. Lewin,et al.  Predictive maintenance using PCA , 1994 .

[35]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[36]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[37]  P. D. McFadden,et al.  Model for the vibration produced by a single point defect in a rolling element bearing , 1984 .

[38]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[39]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[40]  Junsheng Cheng,et al.  Adaptive periodic mode decomposition and its application in rolling bearing fault diagnosis , 2021 .

[41]  Baokun Han,et al.  An intelligent diagnosis framework for roller bearing fault under speed fluctuation condition , 2021, Neurocomputing.

[42]  Jyoti K. Sinha,et al.  A future possibility of vibration based condition monitoring of rotating machines , 2013 .

[43]  Eun Ryung Lee,et al.  PRINCIPAL COMPONENT ANALYSIS IN VERY HIGH-DIMENSIONAL SPACES , 2012 .

[44]  Yanyang Zi,et al.  Bearing condition monitoring based on shock pulse method and improved redundant lifting scheme , 2008, Math. Comput. Simul..