Optimal convergence rate of the explicit finite difference scheme for American option valuation

An optimal convergence rate O(@Dx) for an explicit finite difference scheme for a variational inequality problem is obtained under the stability condition @s^[email protected]@Dx^2=<1 using completely PDE methods. As a corollary, a binomial tree scheme of an American put option (where @s^[email protected]@Dx^2=1) is convergent unconditionally with the rate O((@Dt)^1^/^2).

[1]  A. Friedman Variational principles and free-boundary problems , 1982 .

[2]  Espen R. Jakobsen,et al.  ON THE RATE OF CONVERGENCE OF APPROXIMATION SCHEMES FOR BELLMAN EQUATIONS ASSOCIATED WITH OPTIMAL STOPPING TIME PROBLEMS , 2003 .

[3]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[4]  Xiaonan Wu,et al.  A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..

[5]  Kok Lay Teo,et al.  Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation , 2006 .

[6]  J. Hull Options, futures & other derivatives , 2003 .

[7]  I. Karatzas,et al.  A new approach to the skorohod problem, and its applications , 1991 .

[8]  Song Wang,et al.  Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing , 2007, Numerische Mathematik.

[9]  Damien Lamberton,et al.  Optimal stopping and embedding , 2000, Journal of Applied Probability.

[10]  Min Dai,et al.  Convergence of Binomial Tree Method for European/American Path-Dependent Options , 2004, SIAM J. Numer. Anal..

[11]  Guofu Zhou,et al.  On the Rate of Convergence of Discrete‐Time Contingent Claims , 2000 .

[12]  Jin Liang,et al.  On the rate of convergence of the binomial tree scheme for American options , 2007, Numerische Mathematik.

[13]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[14]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[15]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[16]  R. Myneni The Pricing of the American Option , 1992 .

[17]  Bernard Lapeyre,et al.  Introduction to Stochastic Calculus Applied to Finance , 2007 .

[18]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[19]  Kaushik I. Amin,et al.  CONVERGENCE OF AMERICAN OPTION VALUES FROM DISCRETE‐ TO CONTINUOUS‐TIME FINANCIAL MODELS1 , 1994 .

[20]  Lamberton Brownian Optimal Stopping and Random Walks , 2002 .

[21]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[22]  Walter Allegretto,et al.  Finite Element Error Estimates for a Nonlocal Problem in American Option Valuation , 2001, SIAM J. Numer. Anal..

[23]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[24]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .