Spline Implicitization of Planar Curves

We present two software packages for computing the null space of a matrix with rational function coefficients. We use two approaches based on classical interpolation algorithms. The packages are written in the Mathematica language.In the first package we use polynomial interpolation and Cramer's rule to reconstruct the components of the solutions. This package works under some assumptions on the matrix that, in most cases, are true for systems involved in Zeilberger's algorithm for hypergeometric definite summation.In the second package we use a hybrid method based on heuristic rational function interpolation on some low degree components of the solutions and "symbolic" Gaussian elimination on the other components. The second package works under very general conditions and can be customized for systems related to symbolic summation.

[1]  Yiu-Kwong Man,et al.  Computing Closed Form Solutions of First Order ODEs Using the Prelle-Singer Procedure , 1993, J. Symb. Comput..

[2]  Stephen M. Watt,et al.  A geometric-numeric algorithm for absolute factorization of multivariate polynomials , 2002, ISSAC '02.

[3]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[4]  Ryutaroh Matsumoto Computing the Radical of an Ideal in Positive Characteristic , 2001, J. Symb. Comput..

[5]  R. Risch The problem of integration in finite terms , 1969 .

[6]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[7]  Kazuhiro Yokoyama PRIME DECOMPOSITION OF POLYNOMIAL IDEALS OVER FINITE FIELDS , 2002 .

[8]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[9]  U. Kulisch,et al.  Scientific Computing with Automatic Result Verification. , 1994 .

[10]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[11]  Hong Zhang,et al.  Pseudozeros of multivariate polynomials , 2003, Math. Comput..

[12]  G. Carrà Ferro,et al.  Differential Gröbner bases in one variable and in the partial case , 1997 .

[13]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[14]  Manuel Bronstein,et al.  On Solutions of Linear Ordinary Difference Equations in their Coefficient Field , 2000, J. Symb. Comput..

[15]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[16]  Carlo Traverso,et al.  Yet Another Ideal Decomposition Algorithm , 1997, AAECC.

[17]  Ronald G Mosier Root neighborhoods of a polynomial , 1986 .

[18]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[19]  M. Kanno,et al.  Guaranteed accuracy computations in systems and control , 2003, 2003 European Control Conference (ECC).

[20]  Lihong Zhi,et al.  Nearest Singular Polynomials , 1998, J. Symb. Comput..

[21]  A. Neumaier Interval methods for systems of equations , 1990 .

[22]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[23]  Bruno Buchberger,et al.  The Theorema Language : Implementing Object-and Meta-Level Usage of Symbols * , 1998 .

[24]  Jean-Guillaume Dumas,et al.  Finite field linear algebra subroutines , 2002, ISSAC '02.

[25]  Joel Moses,et al.  Symbolic integration: the stormy decade , 1966, CACM.

[26]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.

[27]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[28]  Dominik Wolfgang Gruntz,et al.  On computing limits in a symbolic manipulation system , 1996 .

[29]  Kazuhiro Yokoyama,et al.  Yet another practical implementation of polynomial factorization over finite fields , 2002, ISSAC '02.

[30]  Hans J. Stetter Analysis of zero clusters in multivariate polynomial systems , 1996, ISSAC '96.

[31]  Frédéric Chyzak Gröbner Bases and Applications: Gröbner Bases, Symbolic Summation and Symbolic Integration , 1998 .

[32]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[33]  Michael Green,et al.  Continuity properties of LQG optimal controllers , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[34]  Joel Moses,et al.  Symbolic integration the stormy decade , 1971, SYMSAC '71.

[35]  Walter Keller-Gehrig,et al.  Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..

[36]  Wen-tsün Wu Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving and Polynomial Equations-Solving , 2001 .

[37]  "ORDERS OF INFINITY" GENERATED BY DIFFERENCE EQUATIONS , 1984 .

[38]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[39]  M. Nashed Generalized Inverses and Applications: Proceedings of an Advanced Seminar , 1976 .

[40]  Michael B. Monagan,et al.  Efficient Multivariate Factorization over Finite Fields , 1997, AAECC.

[41]  Bruno Salvy,et al.  Symbolic Asymptotics: Functions of Two Variables, Implicit Functions , 1998, J. Symb. Comput..

[42]  Mary Celine Fasenmyer Some generalized hypergeometric polynomials , 1947 .

[43]  Masayuki Noro,et al.  THE DESIGN AND IMPLEMENTATION OF OpenXM-RFC 100 AND 101 , 2001 .

[44]  Hans J. Stetter Polynomials with Coefficients of Limited Accuracy , 1999, CASC.

[45]  J. Meinhardt,et al.  Symmetries and differential equations , 1981 .

[46]  吴天骄 Some Test Problems on Applications of Wu's Method in Nonlinear Programming Problems , 1994 .

[47]  B. Buchberger,et al.  Gröbner bases and applications , 1998 .

[48]  Hans J. Stetter,et al.  The nearest polynomial with a given zero, and similar problems , 1999, SIGS.

[49]  G. Vinnicombe Uncertainty and Feedback: 8 loop-shaping and the-gap metric , 2000 .

[50]  John Shackell,et al.  Growth Estimates for Exp-Log Functions , 1990, J. Symb. Comput..

[51]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[52]  M. J. Prelle,et al.  Elementary first integrals of differential equations , 1981, SYMSAC '81.