Parameter identification of autonomous vehicles using multi-objective optimization

In order to properly operate an autonomous vehicle navigation system, it is important that the vehicle and sensor models of the vehicle are defined by an accurate parameter set. This paper presents a technique for identifying parameters of an autonomous vehicle using multi-objective optimization, which enables the identification process without introducing additional parameters. A multi-objective optimization method has been further proposed to solve the optimization problem defined for the identification efficiently and promisingly. Results of numerical examples first show that the proposed optimization method can work well for various multi-objective optimization problems. Then, the proposed identification technique has been applied to the actual parameter identification of the autonomous vehicle developed by the authors, and an appropriate parameter set has been obtained.

[1]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[2]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[3]  Genki Yagawa,et al.  Implicit constitutive modelling for viscoplasticity using neural networks , 1998 .

[4]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  李幼升,et al.  Ph , 1989 .

[7]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[8]  Tomonari Furukawa,et al.  Parameter identification with weightless regularization , 2001 .

[9]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[10]  Michael Happold,et al.  The Demeter System for Automated Harvesting , 2002, Auton. Robots.

[11]  Genki Yagawa,et al.  Genetic Algorithms for Real Search Space and Their Use for Nonlinear Inverse Problems. , 1995 .

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  Hugh F. Durrant-Whyte,et al.  An Autonomous Guided Vehicle for Cargo Handling Applications , 1995, ISER.

[14]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[15]  Hugh F. Durrant-Whyte,et al.  An experiment in autonomous navigation of an underground mining vehicle , 1999, IEEE Trans. Robotics Autom..

[16]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[17]  Genki Yagawa,et al.  An extensible evolutionary algorithm approach for inverse problems , 1998 .

[18]  Gamini Dissanayake,et al.  Issues in autonomous navigation of underground vehicles , 1999 .

[19]  Genki Yagawa,et al.  A data interpretation for multi-objective multi-solution problems using clustering algorithm , 2000 .

[20]  Genki Yagawa,et al.  INELASTIC CONSTITUTIVE PARAMETER IDENTIFICATION USING AN EVOLUTIONARY ALGORITHM WITH CONTINUOUS INDIVIDUALS , 1997 .

[21]  Sanjiv Singh,et al.  Vehicle and Path Models for Autonomous Navigation , 1990 .

[22]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[23]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[24]  Takashi Kitagawa A Numerical Method to Estimate the Optimal Regularization Parameter , 1989 .

[25]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[26]  William H. Press,et al.  Numerical recipes in C , 2002 .