A Cost/Speed/Reliability Tradeoff to Erasing
暂无分享,去创建一个
[1] Hans Föllmer,et al. Random fields and diffusion processes , 1988 .
[2] Hilbert J. Kappen,et al. Stochastic Optimal Control in Continuous Space-Time Multi-Agent Systems , 2006, UAI.
[3] Manoj Gopalkrishnan. The Hot Bit I: The Szilard-Landauer Correspondence , 2013, ArXiv.
[4] Stefan Schaal,et al. Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation , 2012, IEEE Transactions on Robotics.
[5] John von Neumann,et al. Theory Of Self Reproducing Automata , 1967 .
[6] R. Landauer,et al. Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..
[7] U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.
[8] Evangelos A. Theodorou,et al. An iterative path integral stochastic optimal control approach for learning robotic tasks , 2011 .
[9] John A. Swanson,et al. Physical versus Logical Coupling in Memory Systems , 1960, IBM J. Res. Dev..
[10] Massimiliano Esposito,et al. Second law and Landauer principle far from equilibrium , 2011, 1104.5165.
[11] Robert Aebi. Schrödinger Diffusion Processes , 1996 .
[12] R. Zwanzig. Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).
[13] Matanya B. Horowitz. Efficient Methods for Stochastic Optimal Control , 2014 .
[14] E. Todorov,et al. A UNIFIED THEORY OF LINEARLY SOLVABLE OPTIMAL CONTROL , 2012 .
[15] A. Beurling,et al. An Automorphism of Product Measures , 1960 .
[16] Erik Aurell,et al. Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.
[17] H. Kappen. Path integrals and symmetry breaking for optimal control theory , 2005, physics/0505066.
[18] Emanuel Todorov,et al. Efficient computation of optimal actions , 2009, Proceedings of the National Academy of Sciences.
[19] Patrick R. Zulkowski,et al. Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] J. Lynch,et al. A weak convergence approach to the theory of large deviations , 1997 .
[21] Joel W. Burdick,et al. Semidefinite relaxations for stochastic optimal control policies , 2014, 2014 American Control Conference.
[22] Evangelos A. Theodorou,et al. Iterative path integral stochastic optimal control: Theory and applications to motor control , 2011 .
[23] S. Mitter,et al. Optimal control and nonlinear filtering for nondegenerate diffusion processes , 1982 .
[24] Michael M. Wolf,et al. An improved Landauer principle with finite-size corrections , 2013, 1306.4352.
[25] Evangelos Theodorou,et al. Relative entropy and free energy dualities: Connections to Path Integral and KL control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[26] Robert Alicki. Information is not physical , 2014 .
[27] Rob R. de Ruyter van Steveninck,et al. The metabolic cost of neural information , 1998, Nature Neuroscience.
[28] Vlatko Vedral,et al. Guaranteed energy-efficient bit reset in finite time. , 2013, Physical review letters.
[29] Peter Salamon,et al. Finite time optimizations of a Newton’s law Carnot cycle , 1981 .
[30] K. Sekimoto. Kinetic Characterization of Heat Bath and the Energetics of Thermal Ratchet Models , 1997 .
[31] Charles H. Bennett,et al. The thermodynamics of computation—a review , 1982 .
[32] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[33] J. Schwartz,et al. Theory of Self-Reproducing Automata , 1967 .
[34] A D Wissner-Gross,et al. Causal entropic forces. , 2013, Physical review letters.
[35] H. Kappen. Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.
[36] Hilbert J. Kappen,et al. Graphical Model Inference in Optimal Control of Stochastic Multi-Agent Systems , 2008, J. Artif. Intell. Res..
[37] Vicenç Gómez,et al. Optimal control as a graphical model inference problem , 2009, Machine Learning.
[38] Michael Benjamin Propp,et al. The thermodynamic properties of Markov processes , 1985 .
[39] Trevor N. Mudge,et al. Power: A First-Class Architectural Design Constraint , 2001, Computer.
[40] L. Szilard. über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .
[41] M. Esposito,et al. Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.