A Cost/Speed/Reliability Tradeoff to Erasing

We present a KL-control treatment of the fundamental problem of erasing a bit. We introduce notions of reliability of information storage via a reliability timescale \(\tau _r\), and speed of erasing via an erasing timescale \(\tau _e\). Our problem formulation captures the tradeoff between speed, reliability, and the Kullback-Leibler (KL) cost required to erase a bit. We show that erasing a reliable bit fast costs at least \(\log 2 - \log \left( 1 - {\text {e}}^{-\frac{\tau _e}{\tau _r}}\right) > \log 2\), which goes to \(\frac{1}{2} \log \frac{2\tau _r}{\tau _e}\) when \(\tau _r>>\tau _e\).

[1]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[2]  Hilbert J. Kappen,et al.  Stochastic Optimal Control in Continuous Space-Time Multi-Agent Systems , 2006, UAI.

[3]  Manoj Gopalkrishnan The Hot Bit I: The Szilard-Landauer Correspondence , 2013, ArXiv.

[4]  Stefan Schaal,et al.  Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation , 2012, IEEE Transactions on Robotics.

[5]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[6]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[7]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[8]  Evangelos A. Theodorou,et al.  An iterative path integral stochastic optimal control approach for learning robotic tasks , 2011 .

[9]  John A. Swanson,et al.  Physical versus Logical Coupling in Memory Systems , 1960, IBM J. Res. Dev..

[10]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[11]  Robert Aebi Schrödinger Diffusion Processes , 1996 .

[12]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[13]  Matanya B. Horowitz Efficient Methods for Stochastic Optimal Control , 2014 .

[14]  E. Todorov,et al.  A UNIFIED THEORY OF LINEARLY SOLVABLE OPTIMAL CONTROL , 2012 .

[15]  A. Beurling,et al.  An Automorphism of Product Measures , 1960 .

[16]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[17]  H. Kappen Path integrals and symmetry breaking for optimal control theory , 2005, physics/0505066.

[18]  Emanuel Todorov,et al.  Efficient computation of optimal actions , 2009, Proceedings of the National Academy of Sciences.

[19]  Patrick R. Zulkowski,et al.  Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[21]  Joel W. Burdick,et al.  Semidefinite relaxations for stochastic optimal control policies , 2014, 2014 American Control Conference.

[22]  Evangelos A. Theodorou,et al.  Iterative path integral stochastic optimal control: Theory and applications to motor control , 2011 .

[23]  S. Mitter,et al.  Optimal control and nonlinear filtering for nondegenerate diffusion processes , 1982 .

[24]  Michael M. Wolf,et al.  An improved Landauer principle with finite-size corrections , 2013, 1306.4352.

[25]  Evangelos Theodorou,et al.  Relative entropy and free energy dualities: Connections to Path Integral and KL control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[26]  Robert Alicki Information is not physical , 2014 .

[27]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[28]  Vlatko Vedral,et al.  Guaranteed energy-efficient bit reset in finite time. , 2013, Physical review letters.

[29]  Peter Salamon,et al.  Finite time optimizations of a Newton’s law Carnot cycle , 1981 .

[30]  K. Sekimoto Kinetic Characterization of Heat Bath and the Energetics of Thermal Ratchet Models , 1997 .

[31]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[32]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[33]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[34]  A D Wissner-Gross,et al.  Causal entropic forces. , 2013, Physical review letters.

[35]  H. Kappen Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.

[36]  Hilbert J. Kappen,et al.  Graphical Model Inference in Optimal Control of Stochastic Multi-Agent Systems , 2008, J. Artif. Intell. Res..

[37]  Vicenç Gómez,et al.  Optimal control as a graphical model inference problem , 2009, Machine Learning.

[38]  Michael Benjamin Propp,et al.  The thermodynamic properties of Markov processes , 1985 .

[39]  Trevor N. Mudge,et al.  Power: A First-Class Architectural Design Constraint , 2001, Computer.

[40]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[41]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.