Information geometry of q-Gaussian densities and behaviors of solutions to related diffusion equations

This paper presents new geometric aspects of the behaviors of solutions to the porous medium equation (PME) and its associated equation. First we discuss thermostatistical structure with information geometry on a manifold of generalized exponential densities. A dualistic relation between the two existing formalisms is elucidated. Next by equipping the manifold of q-Gaussian densities with such a structure, we derive several physically and geometrically interesting properties of the solutions. The manifold is proved invariant and attracting for the evolving solutions, which play crucial roles in our analysis. We demonstrate that the moment-conserving projection of a solution coincides with a geodesic curve on the manifold. Further, the evolutional velocities of the second moments and the convergence rate to the manifold are evaluated in terms of the Bregman divergence. Finally we show that the self-similar solution is geometrically special in the sense that it is simultaneously geodesic with respect to the mutually dual two affine connections.

[1]  W. C. Krumbein,et al.  The Flow of Homogeneous Fluids through Porous Media , 1938 .

[2]  R. E. Pattle DIFFUSION FROM AN INSTANTANEOUS POINT SOURCE WITH A CONCENTRATION-DEPENDENT COEFFICIENT , 1959 .

[3]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[4]  J. Buckmaster Viscous sheets advancing over dry beds , 1977, Journal of Fluid Mechanics.

[5]  Avner Friedman,et al.  The asymptotic behavior of gas in an -dimensional porous medium , 1980 .

[6]  Edward W. Larsen,et al.  Asymptotic analysis of nonlinear Marshak waves , 1980 .

[7]  W. Kath Waiting and propagating fronts in nonlinear diffusion , 1984 .

[8]  William I. Newman,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. I , 1984 .

[9]  J. Burbea Informative Geometry of Probability Spaces , 1984 .

[10]  James Ralston,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. II , 1984 .

[11]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[12]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[13]  D. Aronson The porous medium equation , 1986 .

[14]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[15]  Ann F. S. Mitchell,et al.  The information matrix, skewness tensor and a-connections for the general multivariate elliptic distribution , 1989 .

[16]  J. M. Oller On an intrinsic analysis of statistical estimation , 1993 .

[17]  A. R. Plastino,et al.  Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .

[18]  José Manuel Corcuera,et al.  INTRINSIC ANALYSIS OF STATISTICAL ESTIMATION , 1995 .

[19]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[20]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[21]  C. Tsallis,et al.  Statistical-Mechanical Foundation of the Ubiquity of the Lévy Distributions in Nature [Phys. Rev. Lett. 75, 3589 (1995)] , 1996 .

[22]  M. Shiino H-Theorem with Generalized Relative Entropies and the Tsallis Statistics , 1998 .

[23]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[24]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[25]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[26]  T. Frank,et al.  Lyapunov and free energy functionals of generalized Fokker–Planck equations , 2001 .

[27]  Mihoko Minami,et al.  Robust Blind Source Separation by Beta Divergence , 2002, Neural Computation.

[28]  J. Naudts Deformed exponentials and logarithms in generalized thermostatistics , 2002, cond-mat/0203489.

[29]  T. D. Frank,et al.  Generalized Fokker–Planck equations derived from generalized linear nonequilibrium thermodynamics , 2002 .

[30]  Manuel del Pino,et al.  Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .

[31]  J. Naudts CONTINUITY OF A CLASS OF ENTROPIES AND RELATIVE ENTROPIES , 2002, math-ph/0208038.

[32]  C. Villani Topics in Optimal Transportation , 2003 .

[33]  Juan Luis Vázquez,et al.  Asymptotic behaviour for the porous medium equation posed in the whole space , 2003 .

[34]  T. Frank Nonlinear Fokker-Planck Equations: Fundamentals and Applications , 2004 .

[35]  Takafumi Kanamori,et al.  Information Geometry of U-Boost and Bregman Divergence , 2004, Neural Computation.

[36]  Shinto Eguchi,et al.  Robust Principal Component Analysis with Adaptive Selection for Tuning Parameters , 2004, J. Mach. Learn. Res..

[37]  A. Dawid,et al.  Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.

[38]  Shinto Eguchi,et al.  Robustifying AdaBoost by Adding the Naive Error Rate , 2004, Neural Computation.

[39]  S. Eguchi Information Geometry and Statistical Pattern Recognition , 2004 .

[40]  Estimators, escort probabilities, and phi-exponential families in statistical physics , 2004, math-ph/0402005.

[41]  J. Naudts Generalized thermostatistics based on deformed exponential and logarithmic functions , 2003, cond-mat/0311438.

[42]  Jordan Algebras and Dual Affine Connections on Symmetric Cones , 2004 .

[43]  A. M. Scarfone,et al.  Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy , 2004, cond-mat/0410527.

[44]  Felix Otto,et al.  Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..

[45]  Giuseppe Toscani,et al.  A central limit theorem for solutions of the porous medium equation , 2005 .

[46]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[47]  Hiroki Suyari,et al.  Law of error in Tsallis statistics , 2005, IEEE Transactions on Information Theory.

[48]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[49]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[50]  Marco Di Francesco,et al.  Intermediate Asymptotics Beyond Homogeneity and Self-Similarity: Long Time Behavior for ut = Δϕ(u) , 2006 .

[51]  J. Vázquez,et al.  Smoothing and decay estimates for nonlinear diffusion equations : equations of porous medium type , 2006 .

[52]  A. Dawid The geometry of proper scoring rules , 2007 .

[53]  C. Villani Optimal Transport: Old and New , 2008 .

[54]  Attila Andai,et al.  On the geometry of generalized Gaussian distributions , 2007, J. Multivar. Anal..

[55]  A. Ohara Geometric study for the Legendre duality of generalized entropies and its application to the porous medium equation , 2009, 0904.1530.