Physics of Oil Entrapment in Water-Wet Rock
暂无分享,去创建一个
Displacement of oil from an initially oil-filled porous rock by water consists of advancement of menisci and rupture of oil connections. In displacements controlled by capillarity, which are typical of oil reservoir floods, these pore-level events are governed by the local pore geometry, pore topology, and fluid properties, but the pressure field initiates these pore-level events and integrates them with the externally imposed Darcy flow. This paper reports the physics of the pore-level and their integration on a computationally simple model of rock: a square network of pores. The novelty of the approach lies in keeping track of the evolution of the displacement front and in constructing an approximation of the entire pressure field that carries the information essential for predicting the evolution. The result gives insight into the state of the residual oil saturation and its dependence on pore geometry and the capillary number, N/sub ca/, of displacement. As the capillary number increases, the residual oil saturation decreases and the residual oil blobs tend to be smaller. As the pore size distribution becomes wider, the decrease of residual oil saturation with capillary number becomes smoother.