A conservative multi-tracer transport scheme for spectral-element spherical grids
暂无分享,去创建一个
[1] Paul A. Ullrich,et al. A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..
[2] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[3] Gaston H. Gonnet,et al. Scientific Computation , 2009 .
[4] P. Paolucci,et al. The “Cubed Sphere” , 1996 .
[5] R. Nair,et al. A Nonoscillatory Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2012 .
[6] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[7] Matthew R. Norman,et al. A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics , 2011, J. Comput. Phys..
[8] Dale R. Durran,et al. Selective monotonicity preservation in scalar advection , 2008, J. Comput. Phys..
[9] Ramachandran D. Nair,et al. The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .
[10] Feng Xiao,et al. Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..
[11] M. Taylor. The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .
[12] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[13] Stephen J. Thomas,et al. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid , 2007 .
[14] Xingliang Li,et al. A multi-moment transport model on cubed-sphere grid , 2011 .
[15] Jing-Mei Qiu,et al. A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .
[16] Shian‐Jiann Lin,et al. Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .
[17] Mark A. Taylor,et al. High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..
[18] Mark A. Taylor,et al. CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..
[19] R. Sadourny. Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .
[20] Rodolfo Bermejo,et al. The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes , 1992 .
[21] Peter H. Lauritzen,et al. A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..
[22] Christoph Erath,et al. On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere , 2013 .
[23] Feng Xiao,et al. Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..
[24] William M. Putman,et al. A Finite-Volume Dynamical Core on the Cubed-Sphere Grid , 2009 .
[25] John K. Dukowicz,et al. Incremental Remapping as a Transport/Advection Algorithm , 2000 .
[26] Amik St-Cyr,et al. Optimal limiters for the spectral element method. , 2013 .
[27] D. Durran. Numerical Methods for Fluid Dynamics , 2010 .
[28] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[29] B. P. Leonard,et al. Conservative Explicit Unrestricted-Time-Step Multidimensional Constancy-Preserving Advection Schemes , 1996 .
[30] Francis X. Giraldo,et al. Lagrange—Galerkin methods on spherical geodesic grids: the shallow water equations , 2000 .
[31] D. Durran. Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .
[32] Peter H. Lauritzen,et al. A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid , 2011, J. Comput. Phys..
[34] Stephen J. Thomas,et al. A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.
[35] H. Tufo,et al. A spectral finite volume transport scheme on the cubed-sphere , 2007 .
[36] Christoph Erath,et al. Integrating a scalable and effcient semi-Lagrangian multi-tracer transport scheme in HOMME , 2012, ICCS.
[37] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.