Effect of particle size on the microstructure and consolidation behavior of nickel coating fabricated by laser shockwave sintering

[1]  Xiao Wang,et al.  Microstructure and mechanical performance of nickel coating on copper sheet via laser shock processing , 2022, Applied Surface Science.

[2]  Dongsik Kim,et al.  Laser-induced shock wave sintering of silver nanoparticles on flexible substrates , 2021 .

[3]  Changhee Lee,et al.  Bonding formation in vacuum kinetic-sprayed Y2O3 particles induced by high-velocity impact , 2020 .

[4]  Nanocrystalline Materials , 2020 .

[5]  Rongjie Yang,et al.  Shock-induced consolidation of tungsten nanoparticles—A molecular dynamics approach , 2020 .

[6]  J. Guilemany,et al.  Mechanically induced grain refinement, recovery and recrystallization of cold-sprayed iron aluminide coatings , 2019 .

[7]  Xiao-jie Li,et al.  Factors affecting explosive compaction–sintering of tungsten–copper coating on a copper surface , 2017 .

[8]  A. Mayer,et al.  Shock-induced compaction of nanoparticle layers into nanostructured coating , 2017 .

[9]  N. Birbilis,et al.  High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate , 2014 .

[10]  Wei Sun,et al.  Preparation of nano-Al2O3 dispersion strengthened coating via coating-substrate co-sintering and underwater shock wave compaction , 2013 .

[11]  Cheng Deng,et al.  Laser shock processing on microstructure and hardness of polycrystalline cubic boron nitride tools with and without nanodiamond powders , 2012 .

[12]  X. Xiong,et al.  Dependence of Bonding Mechanisms of Cold Sprayed Coatings on Strain-Rate-Induced Non-Equilibrium Phase Transformation , 2011 .

[13]  G. Tao,et al.  Explosive Compaction-Coating Manufacture Large Area Coat , 2011 .

[14]  J. Legoux,et al.  Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: Electron backscatter diffraction characterization , 2009 .

[15]  V. A. Veretennikov,et al.  Shock consolidation of nanopowdered Ni , 2009 .

[16]  M. Brochu,et al.  Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique , 2008 .

[17]  J. Schoenung,et al.  Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying , 2006 .

[18]  Mica Grujicic,et al.  Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process , 2003 .

[19]  Patrick B. Berbon,et al.  Tensile and creep behavior of cryomilled Inco 625 , 2003 .

[20]  Y. Mai,et al.  Laser shock processing and its effects on microstructure and properties of metal alloys: a review , 2002 .

[21]  E. Olevsky,et al.  Shock consolidation: Microstructurally-based analysis and computational modeling , 1999 .

[22]  D. Benson,et al.  Dynamic compaction of aluminum nanocrystals , 1996 .

[23]  C. Huvier,et al.  Laser-driven shock effects on copper alloy powder green compacts , 1994 .

[24]  P. Ballard,et al.  Physical study of laser-produced plasma in confined geometry , 1990 .

[25]  M. Meyers,et al.  Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy , 1986 .

[26]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[27]  P. Molian,et al.  Laser shock wave consolidation of nanodiamond powders on aluminum 319 , 2009 .

[28]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[29]  T. Ahrens,et al.  Shock wave consolidation of an amorphous alloy , 1984 .

[30]  N. Petch The orientation relationships between cementite and α‐iron , 1953 .