Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire.

Semiconductor nanowires show promise for many device applications, but controlled doping with electronic and magnetic impurities remains an important challenge. Limitations on dopant incorporation have been identified in nanocrystals, raising concerns about the prospects for doping nanostructures. Progress has been hindered by the lack of a method to quantify the dopant distribution in single nanostructures. Recently, we showed that atom probe tomography can be used to determine the composition of isolated nanowires. Here, we report the first direct measurements of dopant concentrations in arbitrary regions of individual nanowires. We find that differences in precursor decomposition rates between the liquid catalyst and solid nanowire surface give rise to a heavily doped shell surrounding an underdoped core. We also present a thermodynamic model that relates liquid and solid compositions to dopant fluxes.

[1]  Scott A. Norris,et al.  Steady growth of nanowires via the vapor-liquid-solid method , 2007 .

[2]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[3]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[4]  Volker Schmidt,et al.  Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism , 2007 .

[5]  L. Lauhon,et al.  Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography , 2006 .

[6]  Charles M. Lieber,et al.  Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .

[7]  D. Coates Diffusion-controlled precipitate growth in ternary systems I , 1972 .

[8]  J. Ott,et al.  Doping of germanium nanowires grown in presence of PH3 , 2006 .

[9]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[10]  Xuema Li,et al.  Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates , 2004 .

[11]  U. Södervall,et al.  Diffusion of Silicon and Phosphorus into Germanium as Studied by Secondary Ion Mass Spectrometry , 1997 .

[12]  Kevin G. Stamplecoskie,et al.  Dopant ion concentration dependence of growth and faceting of manganese-doped GaN nanowires. , 2007, Journal of the American Chemical Society.

[13]  S. Jang,et al.  Phosphorus doping of epitaxial Si and Si1−xGex at very low pressure , 1993 .

[14]  S. Erwin,et al.  Doped Nanocrystals , 2008, Science.

[15]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[16]  Baptiste Gault,et al.  Estimation of the Reconstruction Parameters for Atom Probe Tomography , 2008, Microscopy and Microanalysis.

[17]  Michael J. Aziz,et al.  Model for solute redistribution during rapid solidification , 1982 .

[18]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[19]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[20]  L. Lauhon,et al.  Tomographic analysis of dilute impurities in semiconductor nanostructures , 2008 .

[21]  Elizabeth C. Dickey,et al.  Structural and electrical properties of trimethylboron-doped silicon nanowires , 2004 .

[22]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[23]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[24]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[25]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[26]  P. Clauws Oxygen related defects in germanium , 1996 .

[27]  Kevin G. Stamplecoskie,et al.  General control of transition-metal-doped GaN nanowire growth: toward understanding the mechanism of dopant incorporation. , 2008, Nano letters.

[28]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[29]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .