A new framework for sharp and efficient resolution of NCSP with manifolds of solutions
暂无分享,去创建一个
[1] Frédéric Goualard,et al. Revising Hull and Box Consistency , 1999, ICLP.
[2] Hélène Collavizza,et al. Comparing Partial Consistencies , 1998, SCAN.
[3] R. B. Kearfott,et al. Interval Computations: Introduction, Uses, and Resources , 2000 .
[4] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[5] Jorge J. Moré,et al. Algorithm 566: FORTRAN Subroutines for Testing Unconstrained Optimization Software [C5], [E4] , 1981, TOMS.
[6] Alexandre Goldsztejn. A Right-Preconditioning Process for the Formal–Algebraic Approach to Inner and Outer Estimation of AE-Solution Sets , 2005, Reliab. Comput..
[7] Jean-Pierre Merlet,et al. Parallel Robots , 2000 .
[8] Olivier Lhomme,et al. Consistency Techniques for Numeric CSPs , 1993, IJCAI.
[9] S. Rump. Rigorous sensitivity analysis for systems of linear and nonlinear equations , 1990 .
[10] Frédéric Benhamou,et al. Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..
[11] Pascal Van Hentenryck,et al. CLP(Intervals) Revisited , 1994, ILPS.
[12] Jeff Tupper,et al. Reliable two-dimensional graphing methods for mathematical formulae with two free variables , 2001, SIGGRAPH.
[13] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[14] A. Neumaier. Overestimation in linear interval equations , 1987 .
[15] David A. McAllester,et al. Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .
[16] Alexandre Goldsztejn. A branch and prune algorithm for the approximation of non-linear AE-solution sets , 2006, SAC '06.
[17] Nedialko S. Nedialkov,et al. Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..
[18] A. Neumaier. Interval methods for systems of equations , 1990 .
[19] Alexandre Goldsztejn. Sensitivity Analysis Using a Fixed Point Interval Iteration , 2008, ArXiv.
[20] R. B. Kearfott,et al. An Interval Step Control for Continuation Methods , 1994 .
[21] Frédéric Benhamou,et al. Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.
[22] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[23] Alexandre Goldsztejn,et al. A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions , 2008, CP.
[24] Damien Chablat,et al. Working modes and aspects in fully parallel manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[25] B. Hayes,et al. A Lucid Interval , 2003, American Scientist.
[26] Alex M. Andrew,et al. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .