Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma

Recent studies have identified stem cells in brain cancer. However, their relationship to normal CNS progenitors, including dependence on common lineage-restricted pathways, is unclear. We observe expression of the CNS-restricted transcription factor, OLIG2, in human glioma stem and progenitor cells reminiscent of type C transit-amplifying cells in germinal zones of the adult brain. Olig2 function is required for proliferation of neural progenitors and for glioma formation in a genetically relevant murine model. Moreover, we show p21(WAF1/CIP1), a tumor suppressor and inhibitor of stem cell proliferation, is directly repressed by OLIG2 in neural progenitors and gliomas. Our findings identify an Olig2-regulated lineage-restricted pathway critical for proliferation of normal and tumorigenic CNS stem cells.

[1]  M. Raff,et al.  Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. , 2004, Genes & development.

[2]  S. Weiss,et al.  Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. , 1992, Science.

[3]  Oscar Gonzalez-Perez,et al.  Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain , 2006, The Journal of Neuroscience.

[4]  D. Anderson,et al.  Stem Cells and Pattern Formation in the Nervous System The Possible versus the Actual , 2001, Neuron.

[5]  L. Eng,et al.  Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. , 1972, Brain research.

[6]  K. Meletis,et al.  p53 suppresses the self-renewal of adult neural stem cells , 2005, Development.

[7]  David J. Anderson,et al.  Deregulation of Dorsoventral Patterning by FGF Confers Trilineage Differentiation Capacity on CNS Stem Cells In Vitro , 2003, Neuron.

[8]  R. DePinho,et al.  Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. , 2002, Cancer cell.

[9]  D. Rowitch,et al.  Cross-Repressive Interaction of the Olig2 and Nkx2.2 Transcription Factors in Developing Neural Tube Associated with Formation of a Specific Physical Complex , 2003, The Journal of Neuroscience.

[10]  David J. Anderson,et al.  The bHLH Transcription Factors OLIG2 and OLIG1 Couple Neuronal and Glial Subtype Specification , 2002, Cell.

[11]  M. Caligiuri,et al.  Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia , 2004, The Lancet.

[12]  L. Hengst,et al.  Translational Control of p27Kip1 Accumulation During the Cell Cycle , 1996, Science.

[13]  R. McLendon,et al.  PTEN gene mutations are seen in high-grade but not in low-grade gliomas. , 1997, Cancer research.

[14]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[15]  D. Melton,et al.  "Stemness": Transcriptional Profiling of Embryonic and Adult Stem Cells , 2002, Science.

[16]  A. Besson,et al.  Mitogenic Signaling and the Relationship to Cell Cycle Regulation in Astrocytomas , 2001, Journal of Neuro-Oncology.

[17]  R. Sidman,et al.  Expression profile of an operationally-defined neural stem cell clone , 2005, Experimental Neurology.

[18]  Tong Zheng,et al.  Production and analysis of neurospheres from acutely dissociated and postmortem CNS specimens. , 2002, Methods in molecular biology.

[19]  Daniel A. Lim,et al.  Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain , 1999, Cell.

[20]  D. Botstein,et al.  Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Q. Lu,et al.  Myelinogenesis and Axonal Recognition by Oligodendrocytes in Brain Are Uncoupled in Olig1-Null Mice , 2005, The Journal of Neuroscience.

[22]  R. Fimmers,et al.  TP53 Gene Mutations, Nuclear p53 Accumulation, Expression of Waf/p21, Bcl-2, and CD95 (APO-1/Fas) Proteins are not Prognostic Factors in De Novo Glioblastoma Multiforme , 2001, Journal of Neuro-Oncology.

[23]  W. Kaelin,et al.  Negative control elements of the cell cycle in human tumors. , 1998, Current Opinion in Cell Biology.

[24]  John T. Dimos,et al.  A Stem Cell Molecular Signature , 2002, Science.

[25]  D. Rowitch,et al.  bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS , 2004, Science.

[26]  T. Kondo,et al.  Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor–induced astrocyte differentiation , 2004, The Journal of cell biology.

[27]  T. Sakai,et al.  A novel function of OLIG2 to suppress human glial tumor cell growth via p27Kip1 transactivation , 2006, Journal of Cell Science.

[28]  S. Pfaff,et al.  Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. , 2005, Genes & development.

[29]  Y. Nakazato,et al.  The Expression of P73, P21 and MDM2 Proteins in Gliomas , 2002, Journal of Neuro-Oncology.

[30]  Y. Shang,et al.  Formation of the androgen receptor transcription complex. , 2002, Molecular cell.

[31]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[32]  D. Bigner,et al.  Development of novel targeted therapies in the treatment of malignant glioma , 2004, Nature Reviews Drug Discovery.

[33]  R. DePinho,et al.  Malignant glioma: genetics and biology of a grave matter. , 2001, Genes & development.

[34]  K. Kinzler,et al.  Somatic mutations of EGFR in colorectal cancers and glioblastomas. , 2004, The New England journal of medicine.

[35]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[36]  Daniel G. Tenen,et al.  Disruption of differentiation in human cancer: AML shows the way , 2003, Nature Reviews Cancer.

[37]  Catherine L Nutt,et al.  The Oligodendroglial Lineage Marker OLIG2 Is Universally Expressed in Diffuse Gliomas , 2004, Journal of neuropathology and experimental neurology.

[38]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[39]  Isaac S Kohane,et al.  Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. , 2004, Genes & development.

[40]  David J. Anderson,et al.  Development of NG2 neural progenitor cells requires Olig gene function , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Korsmeyer,et al.  Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix , 2004, Science.

[42]  D. Figarella-Branger,et al.  Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. , 2003, Journal of neurosurgery.

[43]  David E. Anderson,et al.  Changes in the immunologic phenotype of human malignant glioma cells after passaging in vitro. , 2002, Clinical immunology.

[44]  T. Golub,et al.  Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. , 2004, Cancer cell.

[45]  S. Kesari,et al.  The Bad Seed: PDGF Receptors Link Adult Neural Progenitors to Glioma Stem Cells , 2006, Neuron.

[46]  C. Cepko,et al.  Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex , 2001, Nature Neuroscience.

[47]  W. J. Pledger,et al.  Repression of p27kip1 synthesis by platelet-derived growth factor in BALB/c 3T3 cells , 1996, Molecular and cellular biology.

[48]  Tao Sun,et al.  Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection , 2002, Cell.

[49]  Alberto Riva,et al.  MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes , 2005, BMC Bioinformatics.

[50]  D. Louis,et al.  Focus on central nervous system neoplasia. , 2002, Cancer cell.

[51]  A. Gartel,et al.  Lost in transcription: p21 repression, mechanisms, and consequences. , 2005, Cancer research.

[52]  W. Yung,et al.  Expression of an altered epidermal growth factor receptor by human glioblastoma cells. , 1988, Cancer research.

[53]  P. D. de Jong,et al.  The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Beer-Romero,et al.  Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. , 1995, Science.

[55]  D. Farkas,et al.  Isolation of cancer stem cells from adult glioblastoma multiforme , 2004, Oncogene.

[56]  T. Jessell,et al.  Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2 , 2001, Neuron.

[57]  D. Bigner,et al.  Molecular pathogenesis of malignant gliomas. , 1999, Current opinion in oncology.

[58]  T. Roberts,et al.  A PDGF-Regulated Immediate Early Gene Response Initiates Neuronal Differentiation in Ventricular Zone Progenitor Cells , 1997, Neuron.

[59]  Jean-Yves Delattre,et al.  OLIG2 as a specific marker of oligodendroglial tumour cells , 2001, The Lancet.

[60]  J. Ptak,et al.  High Frequency of Mutations of the PIK3CA Gene in Human Cancers , 2004, Science.

[61]  H. Haapasalo,et al.  Cell Cycle Regulators (p21, p53, pRb) in Oligodendrocytic Tumors: a Study by Novel Tumor Microarray Technique , 2001, Journal of Neuro-Oncology.

[62]  D. Rowitch,et al.  Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  K. Aldape,et al.  P16 deletion and mutation analysis in human brain tumors , 1997, Journal of Neuro-Oncology.

[64]  Y. Sawamura,et al.  Expression of the Oligodendroglial Lineage‐Associated Markers Olig1 and Olig2 in Different Types of Human Gliomas , 2003, Journal of neuropathology and experimental neurology.

[65]  D. Scadden,et al.  Hematopoietic stem cell quiescence maintained by p21cip1/waf1. , 2000, Science.

[66]  M. Götz,et al.  Neuronal fate determinants of adult olfactory bulb neurogenesis , 2005, Nature Neuroscience.

[67]  Alberto Riva,et al.  The MAPPER database: a multi-genome catalog of putative transcription factor binding sites , 2004, Nucleic Acids Res..

[68]  W. Sellers,et al.  Lineage dependency and lineage-survival oncogenes in human cancer , 2006, Nature Reviews Cancer.

[69]  D. van der Kooy,et al.  p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. , 2005, Genes & development.

[70]  Y. Nabeshima,et al.  The Basic Helix-Loop-Helix Factor Olig2 Is Essential for the Development of Motoneuron and Oligodendrocyte Lineages , 2002, Current Biology.

[71]  H. Takebayashi,et al.  Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. , 2006, Developmental biology.

[72]  D. Louis,et al.  PTEN mutations in gliomas and glioneuronal tumors , 1998, Oncogene.

[73]  R. Vidal,et al.  Immunolocalization of the Oligodendrocyte Transcription Factor 1 (Olig1) in Brain Tumors , 2004, Journal of neuropathology and experimental neurology.

[74]  F. J. Livesey,et al.  An analysis of the gene expression program of mammalian neural progenitor cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Mitchel S Berger,et al.  Neural stem cells and the origin of gliomas. , 2005, The New England journal of medicine.

[76]  H. Land,et al.  Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. , 1990, Nucleic acids research.

[77]  A. Korshunov,et al.  Immunohistochemical Markers for Prognosis of Oligodendroglial Neoplasms , 2002, Journal of Neuro-Oncology.

[78]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[79]  Nicoletta Kessaris,et al.  Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors , 2004, Development.

[80]  Angelo L. Vescovi,et al.  Brain tumour stem cells , 2006, Nature Reviews Cancer.

[81]  S. Vandenberg,et al.  PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling , 2006, Neuron.

[82]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[83]  M. Nakafuku,et al.  Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of Pan-Neuronal and Subtype-Specific Properties of Motoneurons , 2001, Neuron.