Microfluidics for electronic paper-like displays.

Displays are ubiquitous in modern life, and there is a growing need to develop active, full color, video-rate reflective displays that perform well in high-light conditions. The core of display technology is to generate or manipulate light in the visible wavelength. Colored fluids or fluids with particles can be used to tune the light intensity (greyscale) or wavelength (colors) of reflective displays by different actuation methods. Microfluidic technology plays an increasing role in fluidic manipulation in microscale devices used in display areas. In this article, we will review microfluidic technologies based on different actuation methods used for display applications: pressure-driven flow, electrophoresis, electroosmosis, electrowetting, magnetic-driven flow, and cell-actuation principles.

[1]  Wayne Cranton,et al.  Handbook of Visual Display Technology , 2011, Handbook of Visual Display Technology.

[2]  Yi-Pai Huang,et al.  Mechanism and Improvement of Charged-Particles Transition in Microcup Electrophoretic Displays , 2013, Journal of Display Technology.

[3]  Jim Stalker,et al.  A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci , 2008, PLoS biology.

[4]  Baldev Raj,et al.  A tunable optical filter , 2003 .

[5]  W. Marsden I and J , 2012 .

[6]  Li Qiang,et al.  Luminescent electrophoretic particles via miniemulsion polymerization for night-vision electrophoretic displays. , 2013, ACS applied materials & interfaces.

[7]  Herbert De Smet,et al.  Complete electrical and optical simulation of electronic paper , 2006, Displays.

[8]  N. Mishchuk,et al.  Superfast Electrophoresis of Conducting Dispersed Particles , 1998 .

[9]  Shu Yang,et al.  Electrofluidic displays: Fundamental platforms and unique performance attributes , 2011 .

[10]  Sally A. Swanson,et al.  5.2: High Performance Electrophoretic Displays , 2000 .

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Jonathan Rossiter,et al.  Biomimetic chromatophores for camouflage and soft active surfaces , 2012, Bioinspiration & biomimetics.

[13]  Jae-Sung Song,et al.  Control of the Dispersion Properties of a TiO2 Nano Powder for Electronic Paper , 2006 .

[14]  Ajoy K. Kar,et al.  2010 23RD ANNUAL MEETING OF THE IEEE PHOTONICS SOCIETY , 2010 .

[15]  Lingling Shui,et al.  Multiphase flow in lab on chip devices: a real tool for the future? , 2008, Lab on a chip.

[16]  Shu Yang,et al.  Simulation of Active-Matrix Electrophoretic Display Response Time Optimization by Dual-Gate a-Si:H TFT With a Common Gate Structure , 2008, Journal of Display Technology.

[17]  映像情報メディア学会,et al.  IDW/AD '05 : proceedings of the 12th International Display Workshops in conjunction with Asia Display 2005 , 2005 .

[18]  Han You,et al.  Lightweight electrowetting display on ultra-thin glass substrate , 2013 .

[19]  Tim Koch,et al.  69.4: Novel flexible reflective color media integrated with transparent oxide TFT backplane , 2010 .

[20]  Marc Christophersen,et al.  Recent patents on electrophoretic displays and materials. , 2010, Recent patents on nanotechnology.

[21]  K. M. Blackwood Displays , 2000, Encyclopedia of Evolutionary Psychological Science.

[22]  J Heikenfeld,et al.  Fluid dosing of pigment dispersions in electrofluidic displays , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[23]  J. Jacobson,et al.  An electrophoretic ink for all-printed reflective electronic displays , 1998, Nature.

[24]  Georges Hadziioannou,et al.  Encapsulation of TiO2 in poly(4-vinyl pyridine)-based cationic microparticles for electrophoretic inks , 2008 .

[25]  Chung-Hao Tien,et al.  Principal Component Analysis of Multi-Pigment Scenario in Full-Color Electrophoretic Display , 2013, Journal of Display Technology.

[26]  Tim Koch,et al.  Novel flexible reflective color media with electronic inks , 2010 .

[27]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[28]  Purnendu K. Dasgupta,et al.  Electroosmosis: A reliable fluid propulsion system for flow injection analysis , 1994 .

[29]  T. Kohashi,et al.  Electroosmotic display device , 1991 .

[30]  Zhi-Jie Liu,et al.  Preparation of TiO 2 Nano-particles with Controllable Surface Charges for Electrophoretic Display: Preparation of TiO 2 Nano-particles with Controllable Surface Charges for Electrophoretic Display , 2012 .

[31]  Jason Heikenfeld,et al.  High reflectivity electrofluidic pixels with zero-power grayscale operation , 2010 .

[32]  Jun Ren,et al.  Preparation of PS/TiO2/UF multilayer core-shell hybrid microspheres with high stability. , 2009, Journal of colloid and interface science.

[33]  Lingling Shui,et al.  Multiphase flow in microfluidic systems --control and applications of droplets and interfaces. , 2007, Advances in colloid and interface science.

[34]  Mwj Menno Prins,et al.  Fluid control in multichannel structures by electrocapillary pressure. , 2001, Science.

[35]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[36]  I. Ota,et al.  Electrophoretic image display (EPID) panel , 1973 .

[37]  Hiroshi Matsuda,et al.  5.1: Development of In‐Plane EPD , 2000 .

[38]  Mau-Chung Frank Chang,et al.  A 10-Bit DAC With 1.6-Bit Interpolation Cells for Compact LCD Column Driver ICs , 2013, Journal of Display Technology.

[39]  Juan G. Santiago,et al.  Fabrication and characterization of electroosmotic micropumps , 2001 .

[40]  A.L. Dalisa,et al.  Electrophoretic display technology , 1977, IEEE Transactions on Electron Devices.

[41]  F. P. M. Budzelaar,et al.  46.1: Invited Paper: Novel Design for Full‐Color Electronic Paper , 2008 .

[42]  Paul Drzaic Displays: Microfluidic electronic paper , 2009 .

[43]  Jun Hee Sung,et al.  Microcapsules containing electrophoretic suspension of TiO2 modified with poly(methyl methacrylate) , 2006 .

[44]  Shirong Wang,et al.  Preparation of high efficiency hollow TiO2 nanospheres for electrophoretic displays , 2012 .

[45]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[46]  Tim Koch,et al.  Review Paper: A critical review of the present and future prospects for electronic paper , 2011 .

[47]  Martin A. Hubbe,et al.  PAPER’S APPEARANCE: A REVIEW , 2008 .

[48]  Shirong Wang,et al.  Novel synthesis and electrophoretic response of low density TiO–TiO2–carbon black composite , 2010 .

[49]  F. Mugele Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics , 2009 .

[50]  Jun Hee Sung,et al.  Electrophoretic response of poly(methyl methacrylate) coated TiO2 nanoparticles , 2005 .

[51]  Markus Zahn,et al.  Magnetic Fluid and Nanoparticle Applications to Nanotechnology , 2001 .

[52]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[53]  J.H. Woo,et al.  Switch Controlled Source Amplifier for Low Power Mobile TFT-LCD Driver IC , 2007, 2007 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[54]  J Z Shao,et al.  Encapsulation of organic yellow pigment particles via miniemulsion polymerisation procedure and their application in electrophoretic displays , 2013 .

[55]  R. J. Schwartz,et al.  Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions , 2009 .

[56]  Alex Henzen 5.1: Invited Paper: Development of E-Paper Color Display Technologies , 2009 .

[57]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[58]  Devi Stuart-Fox,et al.  Camouflage, communication and thermoregulation: lessons from colour changing organisms , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  D. Park,et al.  Microfluidic MEMS-based light modulator using magnetic fluid suitable for flat panel display applications , 2005, Journal of Microelectromechanical Systems.

[60]  Jong-Wook Seo,et al.  An experimental and numerical investigation of flat panel display cell using magnetic fluid , 2002 .

[61]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[64]  Jason Heikenfeld,et al.  Electrowetting optics and displays: Materials implications on performance and reliability , 2011, 16th International Conference on Optical MEMS and Nanophotonics.

[65]  Jun Ren,et al.  Synthesis and Application of Carbon–Iron Oxide Microspheres’ Black Pigments in Electrophoretic Displays , 2010, Nanoscale research letters.

[66]  F. Lanni,et al.  Magnetophoresis of nanoparticles. , 2011, ACS nano.

[67]  Alex Henzen Improvements in in-plane electrophoretic displays , 2011, OPTO.

[68]  Sun Jae Kim,et al.  Preparation of Electronic Ink Using TiO2 Particles Dispersed in Low Dielectric Solvent , 2007 .

[69]  Hongzheng Chen,et al.  Preparation and characterization of carbon black/acrylic copolymer hybrid particles for dual particle electrophoretic display , 2011 .

[70]  Xiaopeng Zhao,et al.  Fabrication and Properties of Electrophoretic Display Thin Film for Electronic Paper , 2009 .

[71]  Mi Kyung Kim,et al.  Density compatibility of encapsulation of white inorganic TiO2 particles using dispersion polymerization technique for electrophoretic display , 2004 .

[72]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[73]  Jae-Hyeon Ko,et al.  Correlation Between the Optical Performance of the Reflective Polarizer and the Structure of LCD Backlight , 2009 .

[74]  S. Wereley,et al.  soft matter , 2019, Science.

[75]  G. Gelinck,et al.  Flexible electronic‐paper active‐matrix displays , 2005 .