Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value

This simulative work analyzes the impact of fuel type on the energy efficiency of systems composed by a fuel processor for hydrogen production and a PEM (proton exchange membrane) fuel cell. Two fuel processors are simulated, one employs steam reforming to produce hydrogen, the other one autothermal reforming. In both cases, fuel processing is completed by two water gas shift units and one preferential CO oxidation unit.

[1]  Yongping Hou,et al.  The analysis for the efficiency properties of the fuel cell engine , 2007 .

[2]  A. Perna,et al.  Investigations on the behaviour of 2 kW natural gas fuel processor , 2011 .

[3]  Jing Sun,et al.  Modeling and dynamics of an autothermal JP5 fuel reformer for marine fuel cell applications , 2008 .

[4]  L. Menna,et al.  Energy efficiency of membrane-based fuel processors – PEM fuel cell systems , 2010 .

[5]  Pio A. Aguirre,et al.  Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems , 2007 .

[6]  Rodney L. Borup,et al.  Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds , 2004 .

[7]  G. Saracco,et al.  Concept Study on ATR and SR Fuel Processors for Liquid Hydrocarbons , 2006 .

[8]  S. Devotta,et al.  Integrated Fuel Cell Processor for a 5-kW Proton-Exchange Membrane Fuel Cell , 2005 .

[9]  A. Melgar,et al.  Diesel fuel processor for hydrogen production for 5 kW fuel cell application , 2007 .

[10]  Rajesh K. Ahluwalia,et al.  Fuel processors for automotive fuel cell systems: a parametric analysis , 2001 .

[11]  Eugenio Calò,et al.  Small stationary reformers for H2 production from hydrocarbons , 2010 .

[12]  Linda Barelli,et al.  Dynamic analysis of PEMFC-based CHP systems for domestic application , 2012 .

[13]  L. Menna,et al.  Analysis of the energy efficiency of innovative ATR-based PEM fuel cell system with hydrogen membrane separation , 2009 .

[14]  Elio Jannelli,et al.  Performance of a Polymer Electrolyte Membrane Fuel Cell System Fueled With Hydrogen Generated by a Fuel Processor , 2007 .

[15]  J. C. Schouten,et al.  Exergy analysis of an integrated fuel processor and fuel cell (FP–FC) system , 2006 .

[16]  A. Ersöz,et al.  Reforming options for hydrogen production from fossil fuels for PEM fuel cells , 2006 .

[17]  Abdellatif Miraoui,et al.  Methanol fuel processor and PEM fuel cell modeling for mobile application , 2010 .

[18]  L. Menna,et al.  Thermodynamic analysis of ethanol processors – PEM fuel cell systems , 2010 .

[19]  Stefan Martin,et al.  On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of au , 2011 .

[20]  Rajesh K. Ahluwalia,et al.  A natural-gas fuel processor for a residential fuel cell system. , 2009 .

[21]  Thomas Aicher,et al.  Fuel processors for fuel cell APU applications , 2006 .

[22]  Spyros Voutetakis,et al.  A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies , 2009 .

[23]  Sibel Ozdogan,et al.  Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming , 2006 .

[24]  Teresa J. Leo,et al.  Exergy analysis of PEM fuel cells for marine applications , 2010 .

[25]  T. Baier,et al.  A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units: Part I. Development of autothermal reforming catalyst and reactor , 2008 .